Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
Mol Metab ; 58: 101441, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35031523

RESUMO

OBJECTIVE: Cancer cachexia is a devastating chronic condition characterized by involuntary weight loss, muscle wasting, abnormal fat metabolism, anorexia, and fatigue. However, the molecular mechanisms underlying this syndrome remain poorly understood. In particular, the hypothalamus may play a central role in cachexia, given that it has direct access to peripheral signals because of its anatomical location and attenuated blood-brain barrier. Furthermore, this region has a critical role in regulating appetite and metabolism. METHODS: To provide a detailed analysis of the hypothalamic response to cachexia, we performed single-cell RNA-seq combined with RNA-seq of the medial basal hypothalamus (MBH) in a mouse model for pancreatic cancer. RESULTS: We found many cell type-specific changes, such as inflamed endothelial cells, stressed oligodendrocyes and both inflammatory and moderating microglia. Lcn2, a newly discovered hunger suppressing hormone, was the highest induced gene. Interestingly, cerebral treatment with LCN2 not only induced many of the observed molecular changes in cachexia but also affected gene expression in food-intake decreasing POMC neurons. In addition, we found that many of the cachexia-induced molecular changes found in the hypothalamus mimic those at the primary tumor site. CONCLUSION: Our data reveal that multiple cell types in the MBH are affected by tumor-derived factors or host factors that are induced by tumor growth, leading to a marked change in the microenvironment of neurons critical for behavioral, metabolic, and neuroendocrine outputs dysregulated during cachexia. The mechanistic insights provided in this study explain many of the clinical features of cachexia and will be useful for future therapeutic development.


Assuntos
Caquexia , Neoplasias Pancreáticas , Animais , Caquexia/metabolismo , Células Endoteliais/metabolismo , Redes Reguladoras de Genes , Hipotálamo/metabolismo , Camundongos , Neoplasias Pancreáticas/complicações , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Análise de Sequência de RNA , Microambiente Tumoral , Neoplasias Pancreáticas
2.
Glia ; 68(7): 1479-1494, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32039522

RESUMO

Microglia in the mediobasal hypothalamus (MBH) respond to inflammatory stimuli and metabolic perturbations to mediate body composition. This concept is well studied in the context of high fat diet induced obesity (HFDO), yet has not been investigated in the context of cachexia, a devastating metabolic syndrome characterized by anorexia, fatigue, and muscle catabolism. We show that microglia accumulate specifically in the MBH early in pancreatic ductal adenocarcinoma (PDAC)-associated cachexia and assume an activated morphology. Furthermore, we observe astrogliosis in the MBH and hippocampus concurrent with cachexia initiation. We next show that circulating immune cells resembling macrophages infiltrate the MBH. PDAC-derived factors induced microglia to express a transcriptional profile in vitro that was distinct from that induced by lipopolysaccharide (LPS). Microglia depletion through CSF1-R antagonism resulted in accelerated cachexia onset and increased anorexia, fatigue, and muscle catabolism during PDAC. This corresponded with increased hypothalamic-pituitary-adrenal (HPA) axis activation. CSF1-R antagonism had little effect on inflammatory response in the circulation, liver, or tumor. These findings demonstrate that microglia are protective against PDAC cachexia and provide mechanistic insight into this function.


Assuntos
Caquexia/metabolismo , Hipotálamo/metabolismo , Microglia/metabolismo , Neoplasias Pancreáticas/metabolismo , Animais , Caquexia/imunologia , Metabolismo Energético/fisiologia , Gliose/metabolismo , Inflamação/metabolismo , Macrófagos/metabolismo , Camundongos , Obesidade/metabolismo , Neoplasias Pancreáticas/patologia , Neoplasias Pancreáticas
3.
Brain Behav Immun ; 73: 364-374, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29852290

RESUMO

Hypothalamic inflammation is a key component of acute sickness behavior and cachexia, yet mechanisms of inflammatory signaling in the central nervous system remain unclear. Previous work from our lab and others showed that while MyD88 is an important inflammatory signaling pathway for sickness behavior, MyD88 knockout (MyD88KO) mice still experience sickness behavior after inflammatory stimuli challenge. We found that after systemic lipopolysaccharide (LPS) challenge, MyD88KO mice showed elevated expression of several cytokine and chemokine genes in the hypothalamus. We therefore assessed the role of an additional inflammatory signaling pathway, TRIF, in acute inflammation (LPS challenge) and in a chronic inflammatory state (cancer cachexia). TRIFKO mice resisted anorexia and weight loss after peripheral (intraperitoneal, IP) or central (intracerebroventricular, ICV) LPS challenge and in a model of pancreatic cancer cachexia. Compared to WT mice, TRIFKO mice showed attenuated upregulation of Il6, Ccl2, Ccl5, Cxcl1, Cxcl2, and Cxcl10 in the hypothalamus after IP LPS treatment, as well as attenuated microglial activation and neutrophil infiltration into the brain after ICV LPS treatment. Lastly, we found that TRIF was required for Ccl2 upregulation in the hypothalamus and induction of the catabolic genes, Mafbx, Murf1, and Foxo1 in gastrocnemius during pancreatic cancer. In summary, our results show that TRIF is an important inflammatory signaling mediator of sickness behavior and cachexia and presents a novel therapeutic target for these conditions.


Assuntos
Proteínas Adaptadoras de Transporte Vesicular/fisiologia , Caquexia/fisiopatologia , Comportamento de Doença/efeitos dos fármacos , Proteínas Adaptadoras de Transporte Vesicular/imunologia , Proteínas Adaptadoras de Transporte Vesicular/metabolismo , Animais , Encéfalo/metabolismo , Citocinas/metabolismo , Feminino , Hipotálamo/metabolismo , Comportamento de Doença/fisiologia , Inflamação/metabolismo , Lipopolissacarídeos/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microglia/metabolismo , Fator 88 de Diferenciação Mieloide/genética , Fator 88 de Diferenciação Mieloide/metabolismo , Neoplasias/metabolismo , Transdução de Sinais/efeitos dos fármacos
4.
Sci Rep ; 7: 44444, 2017 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-28294152

RESUMO

Melanocortin-3 receptors (MC3R) have a contextual role in appetite control that is amplified with hypocaloric conditioning. C57BL/6J (B6) mice subjected to hypocaloric feeding schedules (HFS) exhibit compulsive behavioral responses involving food anticipatory activity (FAA) and caloric loading following food access. These homeostatic responses to calorie-poor environs are attenuated in B6 mice in which Mc3r transcription is suppressed by a lox-stop-lox sequence in the 5'UTR (Mc3rTB/TB). Here, we report that optimization of caloric loading in B6 mice subject to HFS, characterized by increased meal size and duration, is not observed in Mc3rTB/TB mice. Analysis of hypothalamic and neuroendocrine responses to HFS throughout the light-dark cycle suggests uncoupling of hypothalamic responses involving appetite-stimulating fasting-responsive hypothalamic neurons expressing agouti-related peptide (AgRP) and neuropeptide Y (Npy). Rescuing Mc3rs expression in Nkx2.1(+ve) neurons is sufficient to restore normal hypothalamic responses to negative energy balance. In addition, Mc3rs expressed in Nkx2.1(+ve) neurons are also sufficient to restore FAA and caloric loading of B6 mice subjected to HFS. In summary, MC3Rs expressed in Nkx2.1(+ve) neurons are sufficient to coordinate hypothalamic response and expression of compulsive behavioral responses involving meal anticipation and consumption of large meals during situations of prolonged negative energy balance.


Assuntos
Proteína Relacionada com Agouti/genética , Metabolismo Energético/genética , Neuropeptídeo Y/genética , Receptor Tipo 3 de Melanocortina/genética , Animais , Apetite/genética , Ingestão de Energia/genética , Homeostase , Hipotálamo/metabolismo , Camundongos , Neurônios/metabolismo , Fotoperíodo , Fator Nuclear 1 de Tireoide/genética
5.
PLoS One ; 11(12): e0168731, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27997622

RESUMO

BACKGROUND: Steroid-induced sleep disturbance is a common and highly distressing morbidity for children receiving steroid chemotherapy for the treatment of pediatric acute lymphoblastic leukemia (ALL). Sleep disturbance can negatively impact overall quality of life, neurodevelopment, memory consolidation, and wound healing. Hypothalamic orexin neurons are influential wake-promoting neurons, and disturbances in orexin signaling leads to abnormal sleep behavior. A new class of drug, the orexin receptor antagonists, could be an intriguing option for sleep disorders caused by increased orexinergic output. Our aim was to examine the impact of ALL treatment doses of corticosteroids on the orexin system in rodents and in children undergoing treatment for childhood ALL. METHODS: We administered repeated injections of dexamethasone to rodents and measured responsive orexin neural activity compared to controls. In children with newly diagnosed standard risk B-cell ALL receiving dexamethasone therapy per Children's Oncology Group (COG) induction therapy from 2014-2016, we collected pre- and during-steroids matched CSF samples and measured the impact of steroids on CSF orexin concentration. RESULTS: In both rodents, all markers orexin signaling, including orexin neural output and orexin receptor expression, were preserved in the setting of dexamethasone. Additionally, we did not detect a difference in pre- and during-dexamethasone CSF orexin concentrations in children receiving dexamethasone. CONCLUSIONS: Our results demonstrate that rodent and human orexin physiology is largely preserved in the setting of high dose dexamethasone. The data obtained in our experimental model fail to demonstrate a causative role for disruption of the orexin pathway in steroid-induced sleep disturbance.


Assuntos
Dexametasona , Hipotálamo , Neurônios/metabolismo , Orexinas/metabolismo , Leucemia-Linfoma Linfoblástico de Células Precursoras , Transdução de Sinais/efeitos dos fármacos , Adolescente , Animais , Criança , Pré-Escolar , Dexametasona/administração & dosagem , Dexametasona/efeitos adversos , Feminino , Humanos , Hipotálamo/metabolismo , Hipotálamo/fisiopatologia , Masculino , Camundongos , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamento farmacológico , Leucemia-Linfoma Linfoblástico de Células Precursoras/metabolismo , Leucemia-Linfoma Linfoblástico de Células Precursoras/fisiopatologia , Ratos , Ratos Sprague-Dawley , Transtornos do Sono-Vigília/induzido quimicamente , Transtornos do Sono-Vigília/metabolismo , Transtornos do Sono-Vigília/fisiopatologia
6.
Curr Neurol Neurosci Rep ; 16(11): 98, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27662896

RESUMO

Signs and symptoms of multiple sclerosis are usually attributed to demyelinating lesions in the spinal cord or cerebral cortex. The hypothalamus is a region that is often overlooked yet controls many important homeostatic functions, including those that are perturbed in multiple sclerosis. In this review we discuss how hypothalamic dysfunction may contribute to signs and symptoms in people with multiple sclerosis. While dysfunction of the hypothalamic-pituitary-adrenal axis is common in multiple sclerosis, the effects and mechanisms of this dysfunction are not well understood. We discuss three hypothalamic mechanisms of fatigue in multiple sclerosis: (1) general hypothalamic-pituitary-adrenal axis hyperactivity, (2) disordered orexin neurotransmission, (3) abnormal cortisol secretion. We then review potential mechanisms of weight dysregulation caused by hypothalamic dysfunction. Lastly, we propose future studies and therapeutics to better understand and treat hypothalamic dysfunction in multiple sclerosis. Hypothalamic dysfunction appears to be common in multiple sclerosis, yet current studies are underpowered and contradictory. Future studies should contain larger sample sizes and standardize hormone and neuropeptide measurements.


Assuntos
Hipotálamo/fisiopatologia , Esclerose Múltipla/complicações , Animais , Peso Corporal , Fadiga/etiologia , Humanos , Sistema Hipotálamo-Hipofisário , Hipotálamo/patologia , Esclerose Múltipla/fisiopatologia
7.
Semin Cell Dev Biol ; 54: 42-52, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-26541482

RESUMO

When challenged with a variety of inflammatory threats, multiple systems across the body undergo physiological responses to promote defense and survival. The constellation of fever, anorexia, and fatigue is known as the acute illness response, and represents an adaptive behavioral and physiological reaction to stimuli such as infection. On the other end of the spectrum, cachexia is a deadly and clinically challenging syndrome involving anorexia, fatigue, and muscle wasting. Both of these processes are governed by inflammatory mediators including cytokines, chemokines, and immune cells. Though the effects of cachexia can be partially explained by direct effects of disease processes on wasting tissues, a growing body of evidence shows the central nervous system (CNS) also plays an essential mechanistic role in cachexia. In the context of inflammatory stress, the hypothalamus integrates signals from peripheral systems, which it translates into neuroendocrine perturbations, altered neuronal signaling, and global metabolic derangements. Therefore, we will discuss how hypothalamic inflammation is an essential driver of both the acute illness response and cachexia, and why this organ is uniquely equipped to generate and maintain chronic inflammation. First, we will focus on the role of the hypothalamus in acute responses to dietary and infectious stimuli. Next, we will discuss the role of cytokines in driving homeostatic disequilibrium, resulting in muscle wasting, anorexia, and weight loss. Finally, we will address mechanisms and mediators of chronic hypothalamic inflammation, including endothelial cells, chemokines, and peripheral leukocytes.


Assuntos
Caquexia/complicações , Caquexia/patologia , Hipotálamo/patologia , Inflamação/complicações , Inflamação/patologia , Animais , Humanos , Modelos Biológicos , Músculo Esquelético/patologia , Obesidade/complicações , Obesidade/patologia
8.
Am J Physiol Endocrinol Metab ; 303(12): E1446-58, 2012 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-23047987

RESUMO

Animals exhibit a rapid and sustained anorexia when fed a diet that is deficient in a single indispensable amino acid (IAA). The chemosensor for IAA deficiency resides within the anterior piriform cortex (APC). Although the cellular and molecular mechanisms by which the APC detects IAA deficiency are well established, the efferent neural pathways that reduce feeding in response to an IAA-deficient diet remain to be fully characterized. In the present work, we investigated whether 1) central melanocortin signaling is involved in IAA deficiency-induced anorexia (IAADA) and 2) IAADA engages other key appetite-regulating neuronal populations in the hypothalamus. Rats and mice that consumed a valine-deficient diet (VDD) for 2-3 wk exhibited marked reductions in food intake, body weight, fat and lean body mass, body temperature, and white adipose tissue leptin gene expression, as well as a paradoxical increase in brown adipose tissue uncoupling protein-1 mRNA. Animals consuming the VDD had altered hypothalamic gene expression, typical of starvation. Pharmacological and genetic blockade of central melanocortin signaling failed to increase long-term food intake in this model. Chronic IAA deficiency was associated with a marked upregulation of corticotropin-releasing hormone expression in the lateral hypothalamus, particularly in the parasubthalamic nucleus, an area heavily innervated by efferent projections from the APC. Our observations indicate that the hypothalamic melanocortin system plays a minor role in acute, but not chronic, IAADA and suggest that the restraint on feeding is analogous to that observed after chronic dehydration.


Assuntos
Anorexia/etiologia , Anorexia/metabolismo , Hipotálamo/metabolismo , Vias Neurais/metabolismo , Neurônios/metabolismo , Transdução de Sinais , Valina/deficiência , Tecido Adiposo Marrom/metabolismo , Tecido Adiposo Branco/metabolismo , Animais , Anorexia/patologia , Hormônio Liberador da Corticotropina/genética , Hormônio Liberador da Corticotropina/metabolismo , Feminino , Regulação da Expressão Gênica , Hipotálamo/patologia , Canais Iônicos/genética , Canais Iônicos/metabolismo , Leptina/genética , Leptina/metabolismo , Masculino , Melanocortinas/metabolismo , Camundongos , Camundongos Knockout , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Vias Neurais/patologia , Neurônios/patologia , Especificidade de Órgãos , Ratos , Ratos Sprague-Dawley , Receptor Tipo 4 de Melanocortina/genética , Receptor Tipo 4 de Melanocortina/metabolismo , Proteína Desacopladora 1 , Valina/metabolismo
9.
PLoS One ; 6(2): e17261, 2011 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-21364873

RESUMO

To begin to understand the contributions of maternal obesity and over-nutrition to human development and the early origins of obesity, we utilized a non-human primate model to investigate the effects of maternal high-fat feeding and obesity on breast milk, maternal and fetal plasma fatty acid composition and fetal hepatic development. While the high-fat diet (HFD) contained equivalent levels of n-3 fatty acids (FA's) and higher levels of n-6 FA's than the control diet (CTR), we found significant decreases in docosahexaenoic acid (DHA) and total n-3 FA's in HFD maternal and fetal plasma. Furthermore, the HFD fetal plasma n-6:n-3 ratio was elevated and was significantly correlated to the maternal plasma n-6:n-3 ratio and maternal hyperinsulinemia. Hepatic apoptosis was also increased in the HFD fetal liver. Switching HFD females to a CTR diet during a subsequent pregnancy normalized fetal DHA, n-3 FA's and fetal hepatic apoptosis to CTR levels. Breast milk from HFD dams contained lower levels of eicosopentanoic acid (EPA) and DHA and lower levels of total protein than CTR breast milk. This study links chronic maternal consumption of a HFD with fetal hepatic apoptosis and suggests that a potentially pathological maternal fatty acid milieu is replicated in the developing fetal circulation in the nonhuman primate.


Assuntos
Apoptose/efeitos dos fármacos , Gorduras na Dieta/efeitos adversos , Ácidos Graxos Ômega-3/sangue , Feto/efeitos dos fármacos , Fígado/efeitos dos fármacos , Fenômenos Fisiológicos da Nutrição Materna , Animais , Apoptose/fisiologia , Dieta Aterogênica , Ácidos Graxos Ômega-3/análise , Ácidos Graxos Ômega-3/metabolismo , Feminino , Sangue Fetal/química , Sangue Fetal/metabolismo , Feto/metabolismo , Feto/patologia , Humanos , Fígado/embriologia , Fígado/patologia , Gravidez , Efeitos Tardios da Exposição Pré-Natal/patologia , Primatas , Distribuição Aleatória
10.
Physiol Behav ; 100(5): 478-89, 2010 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-20346963

RESUMO

The role of nutrition and balanced metabolism in normal growth, development, and health maintenance is well known. Patients affected with either acute or chronic diseases often show disorders of nutrient balance. In some cases, a devastating state of malnutrition known as cachexia arises, brought about by a synergistic combination of a dramatic decrease in appetite and an increase in metabolism of fat and lean body mass. Other common features that are not required for the diagnosis include decreases in voluntary movement, insulin resistance, and anhedonia. This combination is found in a number of disorders including cancer, cystic fibrosis, AIDS, rheumatoid arthritis, renal failure, and Alzheimer's disease. The severity of cachexia in these illnesses is often the primary determining factor in both quality of life, and in eventual mortality. Indeed, body mass retention in AIDS patients has a stronger association with survival than any other current measure of the disease. This has led to intense investigation of cachexia and the proposal of numerous hypotheses regarding its etiology. Most authors suggest that cytokines released during inflammation and malignancy act on the central nervous system to alter the release and function of a number of neurotransmitters, thereby altering both appetite and metabolic rate. This review will discuss the salient features of cachexia in human diseases, and review the mechanisms whereby inflammation alters the function of key brain regions to produce stereotypical illness behavior. The paper represents an invited review by a symposium, award winner or keynote speaker at the Society for the Study of Ingestive Behavior [SSIB] Annual Meeting in Portland, July 2009.


Assuntos
Caquexia/patologia , Hipotálamo/fisiopatologia , Animais , Caquexia/etiologia , Caquexia/metabolismo , Caquexia/psicologia , Citocinas/metabolismo , Metabolismo Energético/fisiologia , Comportamento Alimentar/fisiologia , Humanos , Hipotálamo/metabolismo , Hipotálamo/patologia , Inflamação/complicações , Melanocortinas/metabolismo , Modelos Biológicos , Neuropeptídeo Y/metabolismo
11.
Peptides ; 30(2): 210-8, 2009 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19028534

RESUMO

Inflammation-associated cachexia is associated with multiple chronic diseases and involves activation of appetite regulating centers in the arcuate nucleus of the hypothalamus (ARH). The nucleus of the solitary tract (NTS) in the brainstem has also been implicated as an important nucleus involved in appetite regulation. We set out to determine whether the NTS may be involved in inflammation-associated anorexia by injecting IL-1 beta into the 4th ventricle and assessing food intake and NTS neuronal activation. Injection of IL-1 beta produced a decrease in food intake at 3 and 12h after injection which was ameliorated at the 12h time point by a sub-threshold dose of agouti-related peptide (AgRP). Investigation into neuron types in the NTS revealed that IL-1 beta injection was associated with an increase in c-Fos activity in NTS neurons expressing tyrosine hydroxylase (TH). Additionally, injection of IL-1 beta into the 4th ventricle did not produce c-Fos activation of neurons expressing pro-opiomelanocortin (POMC) in the ARH, cells known to be involved in producing anorexia in response to systemic inflammation. Double-label in situ hybridization revealed that TH neurons did not express IL-1 receptor I (IL1-RI) transcript, demonstrating that c-Fos activation of TH neurons in this setting was not via direct stimulation of IL-1 beta on TH neurons themselves. We conclude that IL-1 beta injection into the 4th ventricle produces anorexia and is accompanied by an increase in activation in TH neurons in the NTS. This provides evidence that the brainstem may be an important mediator of anorexia in the setting of inflammation.


Assuntos
Proteína Relacionada com Agouti/farmacologia , Anorexia/induzido quimicamente , Interleucina-1beta/administração & dosagem , Neurônios/enzimologia , Núcleo Solitário/metabolismo , Tirosina 3-Mono-Oxigenase/metabolismo , Animais , Anorexia/metabolismo , Núcleo Arqueado do Hipotálamo/metabolismo , Tronco Encefálico/metabolismo , Hipotálamo/metabolismo , Inflamação/metabolismo , Injeções Intraventriculares , Interleucina-1beta/farmacologia , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Pró-Opiomelanocortina/metabolismo , Ratos , Ratos Sprague-Dawley , Núcleo Solitário/citologia
12.
Am J Physiol Endocrinol Metab ; 295(5): E1000-8, 2008 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-18713954

RESUMO

The anorexia-cachexia syndrome is a debilitating clinical condition characterizing the course of chronic diseases, which heavily impacts on patients' morbidity and quality of life, ultimately accelerating death. The pathogenesis is multifactorial and reflects the complexity and redundancy of the mechanisms controlling energy homeostasis under physiological conditions. Accumulating evidence indicates that, during disease, disturbances of the hypothalamic pathways controlling energy homeostasis occur, leading to profound metabolic changes in peripheral tissues. In particular, the hypothalamic melanocortin system does not respond appropriately to peripheral inputs, and its activity is diverted largely toward the promotion of catabolic stimuli (i.e., reduced energy intake, increased energy expenditure, possibly increased muscle proteolysis, and adipose tissue loss). Hypothalamic proinflammatory cytokines and serotonin, among other factors, are key in triggering hypothalamic resistance. These catabolic effects represent the central response to peripheral challenges (i.e., growing tumor, renal, cardiac failure, disrupted hepatic metabolism) that are likely sensed by the brain through the vagus nerve. Also, disease-induced changes in fatty acid oxidation within hypothalamic neurons may contribute to the dysfunction of the hypothalamic melanocortin system. Ultimately, sympathetic outflow mediates, at least in part, the metabolic changes in peripheral tissues. Other factors are likely involved in the pathogenesis of the anorexia-cachexia syndrome, and their role is currently being elucidated. However, available evidence shows that the constellation of symptoms characterizing this syndrome should be considered, at least in part, as different phenotypes of common neurochemical/metabolic alterations in the presence of a chronic inflammatory state.


Assuntos
Anorexia/fisiopatologia , Caquexia/fisiopatologia , Sistema Nervoso/fisiopatologia , Animais , Anorexia/metabolismo , Caquexia/metabolismo , Citocinas/fisiologia , Humanos , Hipotálamo/metabolismo , Hipotálamo/fisiopatologia , Melanocortinas/fisiologia , Sistema Nervoso/metabolismo , Serotonina/fisiologia , Síndrome
13.
J Am Soc Nephrol ; 18(9): 2517-24, 2007 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-17687077

RESUMO

We have recently shown that genetic or pharmacological blockade of the melanocortin-4 receptor (MC4-R) attenuates uremia-associated cachexia. However, the potential clinical utility of this approach has been limited by the need to deliver a peptide MC4-R antagonist into the ventricles of the brain. NBI-12i is a recently developed small molecule MC4-R antagonist, with high affinity and selectivity that penetrates the central nervous system after peripheral administration. We tested whether NBI-12i would also be effective in attenuating uremia-associated cachexia in a mouse model. Intraperitoneal administration of NBI-12i stimulated food intake and weight gain in uremic mice. Furthermore, NBI-12i-treated uremic mice gained lean body mass, fat mass, and had a lower basal metabolic rate compared to vehicle-treated and diet-supplemented uremic mice, which lost both lean body mass and fat mass and had an increase in basal metabolic rate. We found that NBI-12i normalizes the expression of uncoupling protein, which is normally upregulated in uremic mice, and we speculate that this may contribute to the drug's protective effect. These data underscore the importance of melanocortin signaling in the pathogenesis of uremia-associated cachexia and demonstrate the potential of peripheral administration of MC4-R antagonists as a novel therapeutic approach.


Assuntos
Caquexia/etiologia , Caquexia/fisiopatologia , Piperazinas/administração & dosagem , Receptor Tipo 4 de Melanocortina/antagonistas & inibidores , Uremia/complicações , Animais , Metabolismo Basal/efeitos dos fármacos , Caquexia/metabolismo , Citocinas/sangue , Ingestão de Alimentos/efeitos dos fármacos , Mediadores da Inflamação/sangue , Canais Iônicos/genética , Canais Iônicos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Nefrectomia , Piperazinas/farmacologia , RNA Mensageiro/metabolismo , Proteína Desacopladora 1 , Proteína Desacopladora 3
14.
Endocrinology ; 148(6): 3004-12, 2007 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-17347304

RESUMO

Cancer cachexia is a debilitating syndrome of anorexia and loss of lean body mass that accompanies many malignancies. Ghrelin is an orexigenic hormone with a short half-life that has been shown to improve food intake and weight gain in human and animal subjects with cancer cachexia. We used a rat model of cancer cachexia and administered human ghrelin and a synthetic ghrelin analog BIM-28131 via continuous infusion using sc osmotic minipumps. Tumor-implanted rats receiving human ghrelin or BIM-28131 exhibited a significant increase in food consumption and weight gain vs. saline-treated animals. We used dual-energy x-ray absorptiometry scans to show that the increased weight was due to maintenance of lean mass vs. a loss of lean mass in saline-treated animals. Also, BIM-28131 significantly limited the loss of fat mass normally observed in tumor-implanted rats. We further performed real-time PCR analysis of the hypothalami and brainstems and found that ghrelin-treated animals exhibited a significant increase in expression of orexigenic peptides agouti-related peptide and neuropeptide Y in the hypothalamus and a significant decrease in the expression of IL-1 receptor-I transcript in the hypothalamus and brainstem. We conclude that ghrelin and a synthetic ghrelin receptor agonist improve weight gain and lean body mass retention via effects involving orexigenic neuropeptides and antiinflammatory changes.


Assuntos
Composição Corporal/efeitos dos fármacos , Caquexia/etiologia , Caquexia/patologia , Ingestão de Alimentos/efeitos dos fármacos , Neoplasias/complicações , Hormônios Peptídicos/farmacologia , Animais , Peso Corporal/efeitos dos fármacos , Modelos Animais de Doenças , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Grelina , Hormônio do Crescimento/metabolismo , Hipotálamo/efeitos dos fármacos , Hipotálamo/metabolismo , Fator de Crescimento Insulin-Like I/metabolismo , Masculino , Neoplasias/patologia , Ratos , Ratos Endogâmicos F344 , Carga Tumoral/efeitos dos fármacos
15.
Nat Clin Pract Nephrol ; 2(9): 527-34, 2006 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-16941045

RESUMO

Clinical wasting is an important risk factor for mortality in uremic patients and is reported to have a prevalence of 30-60%. 'Malnutrition' is often inappropriately used to describe a group of nutritional abnormalities in uremic patients, which are characterized by anorexia, increased basal metabolic rate, loss of lean body mass, and declining levels of serum proteins. This syndrome--more accurately described as 'cachexia'--manifests as growth failure in children with uremia. Acidosis and inflammation are important causes of uremic cachexia but the underlying molecular mechanism is not well understood. Concentrations of circulating cytokines, such as leptin, tumor necrosis factor-alpha, interleukin-1, and interleukin-6, are elevated in patients with end-stage renal disease and correlate with the degree of cachexia in these individuals. Other energy-modulating hormones such as ghrelin, and adipokines such as adiponectin and resistin, are also perturbed in uremia and could contribute to nutritional abnormalities. We recently showed that elevated levels of circulating cytokines might be an important contributor to uremia-associated cachexia via signaling through the central melanocortin system. Small-molecule melanocortin antagonists, which are biologically active when administered orally or intraperitoneally, are now available and have been used successfully to ameliorate experimental cachexia. These findings could form the basis of a novel therapeutic strategy for uremic cachexia.


Assuntos
Caquexia/fisiopatologia , Citocinas/fisiologia , Hormônios Peptídicos/fisiologia , Insuficiência Renal/fisiopatologia , Uremia/fisiopatologia , Tecido Adiposo/metabolismo , Suplementos Nutricionais , Metabolismo Energético/fisiologia , Homeostase/fisiologia , Humanos , Inflamação/fisiopatologia , Transdução de Sinais/fisiologia
16.
Neuroendocrinology ; 80(4): 210-8, 2004.
Artigo em Inglês | MEDLINE | ID: mdl-15604600

RESUMO

Knowledge of specific neurotransmitters as well as the pathways and mechanisms regulating appetite in ruminants that continually graze, such as sheep, is incomplete. Although fundamentally agouti-related protein (AGRP) has a similar function across species to increase food intake, the regulation of AGRP may vary across grazing and intermittent feeders. To investigate the role of orexigenic peptides in the regulation of feed intake, we first extracted messenger RNA from sheep that were fasted for 3 days, which was then used for PCR followed by cloning and sequencing to demonstrate the presence of hypothalamic AGRP expression. Ovine AGRP was closely related to the bovine, but contained sequence differences with human and mouse AGRP. Analysis of genomic DNA also revealed a similar gene structure to other published species. Secondly, using dual-labeled immunohistochemistry, we determined that there was both increased AGRP immunoreactivity and increased abundance of c-Fos immunoreactivity in AGRP neurons in the arcuate nucleus of fasted sheep. Because AGRP neurons are activated by fasting, we hypothesized that AGRP would stimulate feeding in this ruminant species. Sheep fed ad libitum were injected intracerebroventricularly with concentrations of AGRP at 0.2 and 2.0 nmol/kg. AGRP at 2.0 nmol/kg significantly increased food intake at 4, 6 and 12 h (p < 0.05). A 4th study was done to investigate the interactions of AGRP and neuropeptide Y (NPY) on food intake over a 24-hour period. Intracerebroventricular injections of either AGRP or NPY significantly increased cumulative food intake over saline controls. When AGRP and NPY were injected in combination, food intake was increased over saline controls; however, AGRP did not potentiate the effects of NPY. These results demonstrate that AGRP stimulates food intake in sheep and highlights the important differences between this species and rodent models.


Assuntos
Regulação do Apetite/fisiologia , Regulação da Expressão Gênica/fisiologia , Peptídeos e Proteínas de Sinalização Intercelular/fisiologia , Proteína Agouti Sinalizadora , Proteína Relacionada com Agouti , Análise de Variância , Animais , Regulação do Apetite/efeitos dos fármacos , Castração/métodos , Contagem de Células/métodos , Clonagem Molecular/métodos , Relação Dose-Resposta a Droga , Combinação de Medicamentos , Ingestão de Alimentos/efeitos dos fármacos , Ingestão de Alimentos/fisiologia , Privação de Alimentos , Humanos , Hipotálamo/citologia , Hipotálamo/efeitos dos fármacos , Hipotálamo/metabolismo , Imuno-Histoquímica/métodos , Injeções Intraventriculares/métodos , Peptídeos e Proteínas de Sinalização Intercelular/farmacologia , Masculino , Camundongos , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Neuropeptídeo Y/farmacologia , Proteínas Proto-Oncogênicas c-fos/metabolismo , RNA Mensageiro/metabolismo , Ratos , Reação em Cadeia da Polimerase Via Transcriptase Reversa/métodos , Alinhamento de Sequência/métodos , Ovinos , Especificidade da Espécie , Fatores de Tempo
17.
Ann N Y Acad Sci ; 994: 258-66, 2003 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-12851324

RESUMO

Cachexia refers to a synergistic combination of a dramatic decrease in appetite and an increase in metabolism of fat and lean body mass. This combination is found in a number of chronic diseases and is an important determinant of mortality. In this paper, we provide evidence that in both acute and chronic disease models, blockade of the MC4-R results in a dramatic attenuation of cachexia. We have also demonstrated that blockade of the melanocortin-3 receptor (MC3-R) leads to enhanced disease-associated cachexia. Ultimately, this work may lead to investigation of drug therapy for this widespread medical problem.


Assuntos
Caquexia/metabolismo , Receptores da Corticotropina/metabolismo , Tecido Adiposo/metabolismo , Animais , Ingestão de Alimentos , Metabolismo Energético/fisiologia , Humanos , Hipotálamo/citologia , Hipotálamo/metabolismo , Camundongos , Camundongos Knockout , Pró-Opiomelanocortina/metabolismo , Receptor Tipo 3 de Melanocortina , Receptor Tipo 4 de Melanocortina , Receptores da Corticotropina/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA