Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Food Chem ; 383: 132565, 2022 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-35245834

RESUMO

Recognized for its nutritional and therapeutic use, extra-virgin Argan Oil (EVAO) is frequently adulterated. Selected-Ion Flow-Tube Mass Spectrometry (SIFT-MS) spectra were applied to quantify adulterants (i.e., Argan oil of lower quality (LQAO), olive oil (OO), and sunflower oil (SO)) in EVAO. Four data sets, i.e., using H3O+, NO+, O2+ reagent ions, and the combined data were considered. Soft independent modelling of class analogy (SIMCA), and partial least squares discriminant analysis (PLS-DA) were assessed to distinguish adulterated- from pure EVAO. The effectiveness of SIFT-MS associated with PLS and support vector machine (SVM) regression to quantify trace adulterants in EVAO was evaluated. Variable Importance in Projection (VIP), and interval-PLS (iPLS) were also investigated to extract useful features. Different models were built to predict the EVAO authenticity and the degree of adulteration. High accuracy was achieved. SIFT-MS spectra handled with the appropriate chemometric tools were found suitable for the quality evaluation of EVAO.


Assuntos
Quimiometria , Óleos de Plantas , Contaminação de Alimentos/análise , Íons/análise , Espectrometria de Massas/métodos , Azeite de Oliva/química , Óleos de Plantas/química
2.
Pharmaceuticals (Basel) ; 14(10)2021 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-34681258

RESUMO

The opioid epidemic was triggered by an overprescription of opioid analgesics. In the treatment of chronic pain, repeated opioid administrations are required which ultimately lead to tolerance, physical dependence, and addiction. A possible way to overcome this conundrum consists of a co-medication that maintains the analgesic benefits of opioids while preventing their adverse liabilities. YHS, the extract of the plant Corydalis yanhusuo, has been used as analgesic in traditional Chinese medicine for centuries. More recently, it has been shown to promote analgesia in animal models of acute, inflammatory, and neuropathic pain. It acts, at least in part, by inhibiting the dopamine D2 receptor, suggesting that it may be advantageous to manage addiction. We first show that, in animals, YHS can increase the efficacy of morphine antinociceptive and, as such, decrease the need of the opioid. We then show that YHS, when coadministered with morphine, inhibits morphine tolerance, dependence, and addiction. Finally, we show that, in animals treated for several days with morphine, YHS can reverse morphine dependence and addiction. Together, these data indicate that YHS may be useful as a co-medication in morphine therapies to limit adverse morphine effects. Because YHS is readily available and safe, it may have an immediate positive impact to curb the opioid epidemic.

3.
Biomed Res Int ; 2021: 6695311, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34337045

RESUMO

Vitex agnus-castus is a medicinal plant of the Verbenaceae family, widely used in traditional medicine. This study is aimed at investigating the functional variability of phenolic compounds in different parts (leaves, stems, flowers, roots, and seeds) of Vitex agnus-castus methanolic extracts and at assessing their in vitro antidiabetic, antioxidant, and antibacterial activities. The results of HPLC-DAD-QTOF-MS indicated the presence of 25 phenolic compounds with a remarkable variability between plant parts; high levels were registered in chlorogenic, vanillic, 3,4-dihydroxybenzoic, and 3-hydroxybenzoic acids; hesperidin; and luteolin. V. agnus castus fruits and stems presented higher antioxidant activities. The extracts inhibited the growth of five pathogenic bacteria with MIC values documented between 7.81 and 31.25 mg/mL. In vitro antihyperglycemic effect revealed higher effect in flowers (2921.84 µg/mL) and seeds (2992.75 µg/mL) against α-glucosidase and of leaves (2156.80 µg/mL) and roots (2357.30 µg/mL) against α-amylase. The findings of this showed that V. agnus castus is a promising source for antidiabetic bioactive compounds. However, further investigations regarding the evaluation of in vivo antidiabetic effects of these compounds are needed.


Assuntos
Fenóis/análise , Fenóis/farmacologia , Vitex/química , Antibacterianos/farmacologia , Antioxidantes/farmacologia , Flores/química , Hipoglicemiantes/farmacologia , Metanol/química , Testes de Sensibilidade Microbiana , Compostos Fitoquímicos/farmacologia , Extratos Vegetais/química , Raízes de Plantas/química , Caules de Planta/química , Sementes/química
4.
Artigo em Inglês | MEDLINE | ID: mdl-33790978

RESUMO

The protection of agricultural crops and the preservation of the organoleptic and health qualities of food products represent a major challenge for the agricultural and agro-food industries. Essential oils have received greater attention as alternatives to replace the control strategies based on pesticides against phytopathogenic bacteria and synthetic compounds in food preservation. The aims of this work were to study the chemical composition of Teucrium polium subsp. polium and Micromeria graeca essential oils and to examine their antioxidant and antimicrobial effects. To carry out this work, the chemical composition of the essential oil was determined using gas chromatography (GC) with the detection feature of mass spectrometry (MS). Subsequently, the antioxidant activity was investigated by DPPH and FRAPS assays. The antimicrobial effect was studied against phytopathogenic and foodborne pathogenic bacteria using the disc and the microdilution methods. Our results showed that GC-MS analysis of EOs allowed the identification of 30 compounds in T. polium EO (TPpEO), while 5 compounds were identified in M. graeca EO (MGEO). TPpEO had as major compounds ß-pinene (19.82%) and germacrene D (18.33%), while geranial (36.93%) and z-citral (18.25%) were the main components of MGEO. The most potent activity was obtained from MGEO (IC50 = 189.7 ± 2.62 µg/mL) compared to TPpEO (IC50 = 208.33 ± 3.51 µg/mL. For the FRAP test, the highest reducing power was obtained from 1.32 ± 0.1 mg AAE/g of TPpEO compared to MGEO 0.51 ± 0.13 mg AAE/g of EO. Both EOs exhibited varying degrees of antibacterial activities against all the tested strains with inhibition zones in the range of 9.33 ± 0.57 mm to >65 mm and MIC values from 0.19 to 12.5 mg/mL. However, MGEO exhibits an interesting anticandidal effect with inhibition zone 44.33 ± 0.57 mm. The findings of this research establish the riches of EOs on volatile compounds, their important antioxidant activity, and their antimicrobial effect against the bacteria tested.

5.
Phytother Res ; 35(7): 3590-3609, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33666283

RESUMO

Plants of the genus Brassica occupy the top place among vegetables in the world. This genus, which contains a group of six related species of a global economic significance, three of which are diploid: Brassica nigra (L.) K. Koch, Brassica oleracea L., and Brassica rapa L. and three are amphidiploid species: Brassica carinata A. Braun, Brassica juncea (L.) Czern., and Brassica napus L. These varieties are divided into oily, fodder, spice, and vegetable based on their morphological structure, chemical composition, and usefulness of plant organs. The present review provides information about habitat, phytochemical composition, and the bioactive potential of Brassica plants, mainly antioxidant, antimicrobial, anticancer activities, and clinical studies in human. Brassica vegetables are of great economic importance around the world. At present, Brassica plants are grown together with cereals and form the basis of global food supplies. They are distinguished by high nutritional properties from other vegetable plants, such as low fat and protein content and high value of vitamins, fibers along with minerals. In addition, they possess several phenolic compounds and have a unique type of compounds namely glucosinolates that differentiate these crops from other vegetables. These compounds are also responsible for numerous biological activities to the genus Brassica as described in this review.


Assuntos
Brassica , Compostos Fitoquímicos , Verduras , Brassica/química , Glucosinolatos , Humanos , Compostos Fitoquímicos/farmacologia , Fitoterapia , Verduras/química
6.
J Ethnopharmacol ; 265: 113303, 2021 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-32877720

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Silybum marianum (L.) Gaertn. or Milk thistle is a medicinal plant native to Northern Africa, Southern Europe, Southern Russia and Anatolia. It also grows in South Australia, North and South America. In traditional knowledge, people have used S. marianum for liver disorders such as hepatitis, liver cirrhosis and gallbladder diseases. The main active compound of the plant seeds is silymarin, which is the most commonly used herbal supplement in the United States for liver problems. Nowadays, S. marianum products are available as capsules, powders, and extracts. AIM OF STUDY: The aim of our study is to draw a more comprehensive overview of the traditional heritage, pharmacological benefits and chemical fingerprint of S. marianum extracts and metabolites; as well as their metabolism and bioavailability. MATERIALS AND METHODS: An extensive literature search has been conducted using relavant keywords and papers with rationale methodology and robust data were selected and discussed. Studies involving S. marianum or its main active ingredients with regards to hepatoprotective, antidiabetic, cardiovascular protection, anticancer and antimicrobial activities as well as the clinical trials performed on the plant, were discussed here. RESULTS: S. marianum was subjected to thousands of ethnopharmacological, experimental and clinical investigations. Although, the plant is available for use as a dietary supplement, the FDA did not yet approve its use for cancer therapy. Nowadays, clinical investigations are in progress where a global evidence of its real efficiency is needed. CONCLUSION: S. marianum is a worldwide used herb with unlimited number of investigations focusing on its benefits and properties, however, little is known about its clinical efficiency. Moreover, few studies have discussed its metabolism, pharmacokinetics and bioavailability, so that all future studies on S. marianum should focus on such areas.


Assuntos
Extratos Vegetais/farmacologia , Silybum marianum/química , Silimarina/farmacologia , Animais , Suplementos Nutricionais , Etnofarmacologia , Humanos , Medicina Tradicional , Sementes , Silimarina/isolamento & purificação
7.
Adv Pharmacol Pharm Sci ; 2020: 8852570, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32954350

RESUMO

Foeniculum vulgare is a medicinal plant used in Moroccan folk medicine to treat several diseases such as diabetes. The aim of this study was to determine the phenolic bioactive compounds and to evaluate the antioxidant and antihyperglycemic activities of Foeniculum vulgare leaf and rootstock extracts. Phenolic compounds of F. vulgare rootstock and leaf extracts were determined using HPLC-DAD-QTOFMS analysis. The antioxidant activity was evaluated using 1,1-diphenyl-2-picrylhydrazyl (DPPH) and 2,2'-azinobis-(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS•+) radicals. Moreover, the in vitro antihyperglycemic effects were tested by measuring the inhibition of α-amylase and α-glucosidase activities. HPLC-DAD-QTOFMS analysis identified thirty-two phenolic components in both leaf and rootstock extracts. Caffeic acid, quinic acid, and chlorogenic acid were the major compounds of F. vulgare leaf extract (FVLE), while the main compound of F. vulgare rootstock extracts (FVRE) was quinic acid. In the DPPH assay, F. vulgare leaf extract showed important antioxidant activity (IC50 = 12.16 ± 0.02 µg/mL) than F. vulgare rootstock extract (IC50 = 34.36 ± 0.09 µg/mL). Moreover, fennel leaf extracts revealed also the most powerful antioxidant activity (IC50 = 22.95 ± 0.4 µg/mL) in the ABTS assay. The in vitro antihyperglycemic activity showed that F. vulgare rootstock extract exhibited a remarkable inhibitory capacity (IC50 = 194.30 ± 4.8 µg/mL) of α-amylase compared with F. vulgare leaf extract (IC50 = 1026.50 ± 6.5 µg/mL). Furthermore, the inhibition of α-glucosidase was more importantly with F. vulgare rootstock (IC50 of 165.90 ± 1.2 µg/mL) than F. vulgare leaf extracts (203.80 ± 1.3 µg/mL). The funding of this study showed that F. vulgare rootstock and leaf extracts presented several phenolic compounds and showed important antioxidant and antidiabetic effects. We suggest that the identified molecules are responsible for the obtained activities. However, further studies focusing on the isolation and the determination of antioxidant and antidiabetic effects of F. vulgare rootstock and leaf main compounds are required.

8.
J Pharm Biomed Anal ; 177: 112849, 2020 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-31499429

RESUMO

Herbal extracts and essential oils have been used over the centuries for their dietary, cosmetic and therapeutic properties. Quality control is needed to guarantee the safety and quality of these consumables. In this regard, fingerprinting techniques are important for inspection of the authenticity and for quality control. Analytical fingerprinting techniques provide signals related to the composition of a matrix (oil, plant extract, food…). The resulting fingerprint (spectrum or chromatogram) obtained for an untargeted or targeted approach is coupled to chemometric data processing, which may allow, for instance, the desired identification or discrimination of the sample considered. In this context, recent advances in untargeted/targeted fingerprinting approaches (especially chromatographic and spectroscopic) were described and their application in the taxonomic identification, classification and authentication of plants (medicinal) and essential oils discussed. An overview of the applications of untargeted/targeted fingerprinting techniques on herbal-extracts and essential-oils analysis, using different chemometric tools, has been included.


Assuntos
Técnicas de Química Analítica/métodos , Óleos Voláteis/análise , Extratos Vegetais/análise , Plantas Medicinais/química , Controle de Qualidade , Geografia , Metabolômica/métodos , Óleos Voláteis/química , Extratos Vegetais/química , Plantas Medicinais/classificação
9.
Bioorg Chem ; 92: 103193, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31445196

RESUMO

A ring transformation of 6-methyl-7H[1,2,4]triazolo [4,3-b][1,2,4] triazepine-8(9H)-ones (thiones) in the presence of acetic anhydride give rise to a new series of 17 condensed 1,2,4-triazole derivatives (1-17). Plausible mechanisms are proposed and show the formation of a beta fused ß-lactam moiety. The compounds were tested for their (i) inhibitory potential on digestive enzymes (α-amylase and α-glucosidase), and (ii) antioxidant activity using radical scavenging (DPPH and ABTS radicals) and ferric reducing power assays. The compounds showed interesting and promising antidiabetic activities compared to the reference drug Acarbose. Molecular docking study has been carried out to determine the binding mode interactions between these derivatives and the targeted enzymes. The results showed the strength of intermolecular hydrogen bonding in ligand-receptor complexes as an important descriptor in rationalizing the observed inhibition results. Moreover, molecular dynamics simulations are also performed for the best protein-ligand complex to understand the stability of small molecule in a protein environment. To shed light on the antioxidant activity of the synthesized compounds and the mechanism involved in DPPH free radical, DFT calculations were performed at the B3P86/6-311++G(d,p) level using the polarizable continuum model. The effect of aprotic solvent on bond dissociation enthalpies (BDEs) is investigated by calculating and comparing BDEs of 1 in methanol and dimethylsulfoxide as solvents using PCM. The obtained results show that the mechanism of action depends on the basic skeleton and the presence of substituted functional groups in these derivatives. BDEs are found to be slightly influenced by the aprotic solvent of less than 0.01 kcal/mol compared with those obtained in methanol.


Assuntos
Antioxidantes/síntese química , Hipoglicemiantes/síntese química , Triazóis/síntese química , alfa-Amilases/metabolismo , alfa-Glucosidases/metabolismo , Antioxidantes/farmacologia , Teoria da Densidade Funcional , Dimetil Sulfóxido/química , Avaliação Pré-Clínica de Medicamentos , Radicais Livres/química , Hipoglicemiantes/farmacologia , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Estrutura Molecular , Solventes/química , Relação Estrutura-Atividade , Termodinâmica , Triazóis/farmacologia
10.
Nutrients ; 10(7)2018 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-29966389

RESUMO

Oxidative stress has been considered a key causing factor of liver damage induced by a variety of agents, including alcohol, drugs, viral infections, environmental pollutants and dietary components, which in turn results in progression of liver injury, non-alcoholic steatohepatitis, non-alcoholic liver disease, liver fibrosis and cirrhosis. During the past 30 years and even after the major progress in the liver disease management, millions of people worldwide still suffer from an acute or chronic liver condition. Curcumin is one of the most commonly used indigenous molecules endowed by various shielding functionalities that protects the liver. The aim of the present study is to comprehensively review pharmacological effects and molecular mechanisms, as well as clinical evidence, of curcumin as a lead compound in the prevention and treatment of oxidative associated liver diseases. For this purpose, electronic databases including “Scopus,” “PubMed,” “Science Direct” and “Cochrane library” were extensively searched with the keywords “curcumin or curcuminoids” and “hepatoprotective or hepatotoxicity or liver” along with “oxidative or oxidant.” Results showed that curcumin exerts remarkable protective and therapeutic effects of oxidative associated liver diseases through various cellular and molecular mechanisms. Those mechanisms include suppressing the proinflammatory cytokines, lipid perodixation products, PI3K/Akt and hepatic stellate cells activation, as well as ameliorating cellular responses to oxidative stress such as the expression of Nrf2, SOD, CAT, GSH, GPx and GR. Taking together, curcumin itself acts as a free radical scavenger over the activity of different kinds of ROS via its phenolic, β-diketone and methoxy group. Further clinical studies are still needed in order to recognize the structure-activity relationships and molecular mechanisms of curcumin in oxidative associated liver diseases.


Assuntos
Antioxidantes/uso terapêutico , Curcumina/uso terapêutico , Hepatopatias/tratamento farmacológico , Fígado/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Animais , Antioxidantes/efeitos adversos , Curcumina/efeitos adversos , Humanos , Fígado/metabolismo , Fígado/patologia , Fígado/fisiopatologia , Hepatopatias/epidemiologia , Hepatopatias/metabolismo , Hepatopatias/fisiopatologia , Transdução de Sinais/efeitos dos fármacos
11.
Food Chem ; 263: 8-17, 2018 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-29784331

RESUMO

This study investigated the effectiveness of SIFT-MS versus chemical profiling, both coupled to multivariate data analysis, to classify 95 Extra Virgin Argan Oils (EVAO), originating from five Moroccan Argan forest locations. The full scan option of SIFT-MS, is suitable to indicate the geographic origin of EVAO based on the fingerprints obtained using the three chemical ionization precursors (H3O+, NO+ and O2+). The chemical profiling (including acidity, peroxide value, spectrophotometric indices, fatty acids, tocopherols- and sterols composition) was also used for classification. Partial least squares discriminant analysis (PLS-DA), soft independent modeling of class analogy (SIMCA), K-nearest neighbors (KNN), and support vector machines (SVM), were compared. The SIFT-MS data were therefore fed to variable-selection methods to find potential biomarkers for classification. The classification models based either on chemical profiling or SIFT-MS data were able to classify the samples with high accuracy. SIFT-MS was found to be advantageous for rapid geographic classification.


Assuntos
Análise de Alimentos/métodos , Espectrometria de Massas/métodos , Óleos de Plantas/análise , Ácidos Graxos/análise , Análise de Alimentos/estatística & dados numéricos , Análise dos Mínimos Quadrados , Espectrometria de Massas/estatística & dados numéricos , Marrocos , Análise Multivariada , Fitosteróis , Esteróis/análise , Tocoferóis/análise
12.
J Basic Clin Physiol Pharmacol ; 30(2): 251-257, 2018 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-30864419

RESUMO

Background Based on our previous ethnobotanical survey, the non-investigated Saharan plant Anabasis aretioides Coss. & Moq., growing in the region of Errachidia, was selected for pharmacological investigation. In Moroccan traditional medicine, A. aretioides is being used for diabetes treatment. Thus, the current work aims at evaluating the antidiabetic, antioxidant, and antibacterial activities of the plant in relation to the digestive tract. Methods The different parts of the plant (aerial parts, roots, seeds) were extracted with methanol (MeOH) and screened in enzymatic assays for their inhibitory potential against α-amylase and α-glucosidase, as well as antioxidant and antibacterial activities. Furthermore, the phenolic compounds were analyzed using HPLC-DAD-QTOF-MS. Results The MeOH extracts of A. aretioides aerial parts, roots, and seeds, respectively, inhibited α-amylase (IC50 of 3148.07 µg/mL, 2440.20 µg/mL, 3395.71 µg/mL) and α-glucosidase (IC50 of 2940.59 µg/mL, 3521.81 µg/mL, 3393.83 µg/mL). Moreover, compared to aerial parts and seeds, the plant roots exhibited higher antioxidant capacity and a potent reducing power. In resazurin microplate assay, the plant parts displayed a minimal inhibitory concentration (MIC) ranging from 7.81 mg/mL to 31.25 mg/mL. Chemical analysis revealed 25 phenolic compounds, with chlorogenic acid as the main phenolic compound in the aerial parts, hesperidin in roots, and quercitrin in seeds. Conclusion Anabasis aretioides cited for treatment of diabetes shows promising antioxidant and antibacterial properties, as well as an ability to inhibit digestive enzyme, including α-amylase and α-glucosidase. Thus, our results explain in part the traditional use of this Saharan medicine and open doors for further in vivo mechanistic and functional studies.


Assuntos
Antioxidantes/farmacologia , Chenopodiaceae/química , Hipoglicemiantes/farmacologia , Fenóis/farmacologia , Extratos Vegetais/farmacologia , Antibacterianos/farmacologia , Ácido Clorogênico/química , Raízes de Plantas/química , Sementes/química , alfa-Amilases/antagonistas & inibidores , alfa-Amilases/metabolismo , alfa-Glucosidases/metabolismo
13.
J Tradit Complement Med ; 7(3): 281-287, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28725621

RESUMO

Hydro-distilled essential oil (EO) from the leaves of the western Mediterranean and Moroccan endemic plant Tetraclinis articulata was analyzed by GC/MS and examined for its acute toxicity on mice, in order to establish the safe doses. Furthermore, the anti-Inflammatory activity was evaluated based on carrageenan and trauma induced rats paw edema and the antioxidant potential has been investigated using different methods including DPPH radical-scavenging assay, Trolox equivalent antioxidant capacity (TEAC) and Ferric-reducing antioxidant power assay (FRAP). The major identified compounds in GC/MS analysis were bornyl acetate (26.81%), camphor (22.40%) and α-pinene (7.16%), with 25 other minor constituents. No mortalities in acute toxicity were observed, indicating that the LD50 of T. articulata essential oil is highest than 5 g/kg. In the anti-inflammatory test based on chemical and mechanical induced trauma, the EO demonstrated an effective reduce swelling by 64.71 ± 9.38% and 69.09 ± 6.02% respectively obtained 6 h after administration at the dose of 200 mg/kg when compared to the control groups. Moreover in the antioxidant testing battery, T. articulata essential oil showed a promising scavenging effect measured by DPPH, TEAC and ferric-reducing power assays with IC50 values of 12.05 ± 0.24 mg/mL, 8.90 ± 0.17 mg/mL and 0.15 ± 0.01 mg/mL respectively. These results suggest that, the EO from the leaves of T. articulata constitutes a valuable source of anti-inflammatory and antioxidant metabolites. These findings argue for the possible integration of this oil in pharmaceutical, cosmetic and food industries.

14.
Nat Prod Res ; 31(22): 2669-2674, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28152614

RESUMO

Scolymus hispanicus or the Golden Thistle, locally known as 'Guernina' or 'Taghediwt', is one of the most appreciated wild vegetables in Morocco. This study aims to characterise the functional chemical and pharmacological variability of Scolymus hispanicus parts (roots, stems, leaves and flowers). The chemical analysis revealed higher content of α-tocopherol in the flowers (2.79 ± 0.07 mg/100 g) and lead to the identification of 3 flavonoids and 13 phenolic acids, with high content of gallic acid in leaves (187.01 ± 10.19 mg/kg); chlorogenic (936.18 ± 92.66 mg/kg) and caffeic (4400.14 ± 191.43 mg/kg) acids in flowers, roots were much more higher in sinapic acid (0.25 ± 0.03 mg/kg) compared to the other parts. Moreover, Scolymus hispanicus ethanolic extracts exhibited interesting antioxidant and antimicrobial properties, promising anti-amylase and anti-glucosidase activities and relevant diuretic effect that confirms its traditional uses.


Assuntos
Flores/química , Folhas de Planta/química , Raízes de Plantas/química , Scolymus/química , Animais , Anti-Infecciosos/química , Anti-Infecciosos/farmacologia , Antioxidantes/química , Antioxidantes/farmacologia , Diuréticos/química , Diuréticos/farmacologia , Flavonoides/análise , Ácido Gálico/análise , Hidroxibenzoatos/análise , Hipoglicemiantes/química , Hipoglicemiantes/farmacologia , Marrocos , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Caules de Planta , alfa-Tocoferol/análise
15.
Biomed Res Int ; 2017: 2789482, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28116307

RESUMO

Cistus genus (Cistaceae) comprises several medicinal plants used in traditional medicines to treat several pathological conditions including hyperglycemia. These include Cistus salviifolius L. (CS) and Cistus monspeliensis L. (CM), still not fully explored as a source of metabolites with therapeutic potential for human diseases. In this study, the antioxidant α-amylase and α-glucosidase enzyme inhibitory effects of aqueous and hydromethanolic extracts from the aerial parts of Moroccan CS and CM were investigated. Antioxidant activity has been assessed using 1,1-diphenyl-2-picrylhydrazyl (DPPH) and 2,2'-azinobis(3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt (ABTS) radicals and ferric reducing/antioxidant power (FRAP) methods. The α-amylase and α-glucosidase inhibitory activity has been assessed using an in vitro model. Moreover, mineral and phenolic contents of CS and CM were analyzed. The extracts of both species exhibited potent antioxidant activity in all used systems and possess strong inhibitory effect towards α-glucosidase (IC50: 0.95 ± 0.14 to 14.58 ± 1.26 µg/mL) and significant inhibitory potential against α-amylase (IC50: 217.10 ± 0.15 to 886.10 ± 0.10 µg/mL). Furthermore, the result showed high levels of phenolic content and unexpectedly some higher levels of mineral content in CS. The results suggest that the phenolic rich extracts of CS and CM may have a therapeutic potential against diseases associated with oxidative stress and may be useful in the management of hyperglycemia in diabetic patients.


Assuntos
Antioxidantes/química , Cistus/química , Inibidores Enzimáticos/química , Enzimas/química , Hiperglicemia/tratamento farmacológico , Benzotiazóis/química , Compostos de Bifenilo/química , Flavonoides/química , Radicais Livres/química , Humanos , Concentração Inibidora 50 , Ferro/química , Estresse Oxidativo , Fenol/química , Picratos/química , Extratos Vegetais/química , Ácidos Sulfônicos/química , alfa-Amilases/química , alfa-Glucosidases/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA