Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Transl Psychiatry ; 12(1): 70, 2022 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-35190533

RESUMO

Larger thalamic volume has been found in children with obsessive-compulsive disorder (OCD) and children with clinical-level symptoms within the general population. Particular thalamic subregions may drive these differences. The ENIGMA-OCD working group conducted mega- and meta-analyses to study thalamic subregional volume in OCD across the lifespan. Structural T1-weighted brain magnetic resonance imaging (MRI) scans from 2649 OCD patients and 2774 healthy controls across 29 sites (50 datasets) were processed using the FreeSurfer built-in ThalamicNuclei pipeline to extract five thalamic subregions. Volume measures were harmonized for site effects using ComBat before running separate multiple linear regression models for children, adolescents, and adults to estimate volumetric group differences. All analyses were pre-registered ( https://osf.io/73dvy ) and adjusted for age, sex and intracranial volume. Unmedicated pediatric OCD patients (<12 years) had larger lateral (d = 0.46), pulvinar (d = 0.33), ventral (d = 0.35) and whole thalamus (d = 0.40) volumes at unadjusted p-values <0.05. Adolescent patients showed no volumetric differences. Adult OCD patients compared with controls had smaller volumes across all subregions (anterior, lateral, pulvinar, medial, and ventral) and smaller whole thalamic volume (d = -0.15 to -0.07) after multiple comparisons correction, mostly driven by medicated patients and associated with symptom severity. The anterior thalamus was also significantly smaller in patients after adjusting for thalamus size. Our results suggest that OCD-related thalamic volume differences are global and not driven by particular subregions and that the direction of effects are driven by both age and medication status.


Assuntos
Transtorno Obsessivo-Compulsivo , Tálamo , Adolescente , Adulto , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Criança , Humanos , Imageamento por Ressonância Magnética , Transtorno Obsessivo-Compulsivo/tratamento farmacológico , Tálamo/diagnóstico por imagem , Tálamo/patologia
2.
Biol Psychiatry ; 87(12): 1022-1034, 2020 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-31178097

RESUMO

BACKGROUND: Lateralized dysfunction has been suggested in obsessive-compulsive disorder (OCD). However, it is currently unclear whether OCD is characterized by abnormal patterns of brain structural asymmetry. Here we carried out what is by far the largest study of brain structural asymmetry in OCD. METHODS: We studied a collection of 16 pediatric datasets (501 patients with OCD and 439 healthy control subjects), as well as 30 adult datasets (1777 patients and 1654 control subjects) from the OCD Working Group within the ENIGMA (Enhancing Neuro Imaging Genetics through Meta Analysis) Consortium. Asymmetries of the volumes of subcortical structures, and of measures of regional cortical thickness and surface areas, were assessed based on T1-weighted magnetic resonance imaging scans, using harmonized image analysis and quality control protocols. We investigated possible alterations of brain asymmetry in patients with OCD. We also explored potential associations of asymmetry with specific aspects of the disorder and medication status. RESULTS: In the pediatric datasets, the largest case-control differences were observed for volume asymmetry of the thalamus (more leftward; Cohen's d = 0.19) and the pallidum (less leftward; d = -0.21). Additional analyses suggested putative links between these asymmetry patterns and medication status, OCD severity, or anxiety and depression comorbidities. No significant case-control differences were found in the adult datasets. CONCLUSIONS: The results suggest subtle changes of the average asymmetry of subcortical structures in pediatric OCD, which are not detectable in adults with the disorder. These findings may reflect altered neurodevelopmental processes in OCD.


Assuntos
Transtorno Obsessivo-Compulsivo , Adulto , Encéfalo/diagnóstico por imagem , Mapeamento Encefálico , Criança , Humanos , Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Transtorno Obsessivo-Compulsivo/diagnóstico por imagem , Tálamo/diagnóstico por imagem
3.
Artigo em Inglês | MEDLINE | ID: mdl-30846367

RESUMO

BACKGROUND: Bulimia nervosa (BN) is associated with functional abnormalities in frontostriatal and frontolimbic circuits. Although structural alterations in the frontal portions of these circuits have been observed, this is the first study of subcortical surface morphometry and the largest study of subcortical volume in BN. METHODS: Anatomical magnetic resonance scans were acquired from 62 female participants with full and subthreshold BN (mean age ± SD, 18.7 ± 4.0 years) and 65 group-matched healthy control participants (mean age ± SD, 19.3 ± 5.7 years). General linear models were used to compare groups and assess the significance of group-by-age interactions on the shape and total volume of 15 subcortical structures (p < .05, familywise error corrected). Associations with illness severity and duration were assessed in the BN group. RESULTS: Subcortical volumes did not differ across groups, but vertexwise analyses revealed inward shape deformations on the anterior surface of the pallidum in BN relative to control participants that were associated with binge-eating frequency and illness duration. Inward deformations on the ventrolateral thalamus and dorsal amygdala were more pronounced with advancing age in the BN group, and inward deformations on the caudate, putamen, and amygdala were associated with self-induced vomiting frequency. CONCLUSIONS: Our findings point to localized deformations on the surface of subcortical structures in areas that comprise both reward and cognitive control circuits. These deformations were more pronounced among older BN participants and among those with the most severe symptoms. Such precise localization of alterations in subcortical morphometry may ultimately aid in efforts to identify markers of risk and BN persistence.


Assuntos
Tonsila do Cerebelo/patologia , Gânglios da Base/patologia , Transtorno da Compulsão Alimentar/patologia , Bulimia Nervosa/patologia , Tálamo/patologia , Adolescente , Adulto , Tonsila do Cerebelo/diagnóstico por imagem , Gânglios da Base/diagnóstico por imagem , Transtorno da Compulsão Alimentar/diagnóstico por imagem , Transtorno da Compulsão Alimentar/fisiopatologia , Bulimia Nervosa/diagnóstico por imagem , Bulimia Nervosa/fisiopatologia , Feminino , Humanos , Imageamento por Ressonância Magnética , Tálamo/diagnóstico por imagem , Adulto Jovem
4.
Am J Psychiatry ; 174(1): 60-69, 2017 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-27609241

RESUMO

OBJECTIVE: Structural brain imaging studies in obsessive-compulsive disorder (OCD) have produced inconsistent findings. This may be partially due to limited statistical power from relatively small samples and clinical heterogeneity related to variation in illness profile and developmental stage. To address these limitations, the authors conducted meta- and mega-analyses of data from OCD sites worldwide. METHOD: T1 images from 1,830 OCD patients and 1,759 control subjects were analyzed, using coordinated and standardized processing, to identify subcortical brain volumes that differ between OCD patients and healthy subjects. The authors performed a meta-analysis on the mean of the left and right hemisphere measures of each subcortical structure, and they performed a mega-analysis by pooling these volumetric measurements from each site. The authors additionally examined potential modulating effects of clinical characteristics on morphological differences in OCD patients. RESULTS: The meta-analysis indicated that adult patients had significantly smaller hippocampal volumes (Cohen's d=-0.13; % difference=-2.80) and larger pallidum volumes (d=0.16; % difference=3.16) compared with adult controls. Both effects were stronger in medicated patients compared with controls (d=-0.29, % difference=-4.18, and d=0.29, % difference=4.38, respectively). Unmedicated pediatric patients had significantly larger thalamic volumes (d=0.38, % difference=3.08) compared with pediatric controls. None of these findings were mediated by sample characteristics, such as mean age or scanning field strength. The mega-analysis yielded similar results. CONCLUSIONS: The results indicate different patterns of subcortical abnormalities in pediatric and adult OCD patients. The pallidum and hippocampus seem to be of importance in adult OCD, whereas the thalamus seems to be key in pediatric OCD. These findings highlight the potential importance of neurodevelopmental alterations in OCD and suggest that further research on neuroplasticity in OCD may be useful.


Assuntos
Globo Pálido/patologia , Hipocampo/patologia , Transtorno Obsessivo-Compulsivo/patologia , Tálamo/patologia , Adolescente , Adulto , Criança , Globo Pálido/diagnóstico por imagem , Hipocampo/diagnóstico por imagem , Humanos , Imageamento por Ressonância Magnética , Pessoa de Meia-Idade , Neuroimagem , Transtorno Obsessivo-Compulsivo/diagnóstico por imagem , Tamanho do Órgão , Tálamo/diagnóstico por imagem , Adulto Jovem
5.
Am J Psychiatry ; 168(12): 1326-37, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21955933

RESUMO

OBJECTIVE: The purpose of this study was to examine neural activity and connectivity within cortico-striato-thalamo-cortical circuits and to reveal circuit-based neural mechanisms that govern tic generation in Tourette's syndrome. METHOD: Functional magnetic resonance imaging data were acquired from 13 individuals with Tourette's syndrome and 21 healthy comparison subjects during spontaneous or simulated tics. Independent component analysis with hierarchical partner matching was used to isolate neural activity within functionally distinct regions of cortico-striato-thalamo-cortical circuits. Granger causality was used to investigate causal interactions among these regions. RESULTS: The Tourette's syndrome group exhibited stronger neural activity and interregional causality than healthy comparison subjects throughout all portions of the motor pathway, including the sensorimotor cortex, putamen, pallidum, and substantia nigra. Activity in these areas correlated positively with the severity of tic symptoms. Activity within the Tourette's syndrome group was stronger during spontaneous tics than during voluntary tics in the somatosensory and posterior parietal cortices, putamen, and amygdala/hippocampus complex, suggesting that activity in these regions may represent features of the premonitory urges that generate spontaneous tic behaviors. In contrast, activity was weaker in the Tourette's syndrome group than in the healthy comparison group within portions of cortico-striato-thalamo-cortical circuits that exert top-down control over motor pathways (the caudate and anterior cingulate cortex), and progressively less activity in these regions accompanied more severe tic symptoms, suggesting that faulty activity in these circuits may result in their failure to control tic behaviors or the premonitory urges that generate them. CONCLUSIONS: Our findings, taken together, suggest that tics are caused by the combined effects of excessive activity in motor pathways and reduced activation in control portions of cortico-striato-thalamo-cortical circuits.


Assuntos
Córtex Cerebral/fisiopatologia , Corpo Estriado/fisiopatologia , Rede Nervosa/fisiopatologia , Tálamo/fisiopatologia , Tiques/fisiopatologia , Síndrome de Tourette/fisiopatologia , Adulto , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Vias Neurais/fisiopatologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA