Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Cell Rep ; 34(1): 108587, 2021 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-33406432

RESUMO

Despite a growing appreciation for microglial influences on the developing brain, the responsiveness of microglia to insults during gestation remains less well characterized, especially in the embryo when microglia themselves are still maturing. Here, we asked if fetal microglia could coordinate an innate immune response to an exogenous insult. Using time-lapse imaging, we showed that hypothalamic microglia actively surveyed their environment by near-constant "touching" of radial glia projections. However, following an insult (i.e., IUE or AAV transduction), this seemingly passive touching became more intimate and long lasting, ultimately resulting in the retraction of radial glial projections and degeneration into small pieces. Mechanistically, the TAM receptors MERTK and AXL were upregulated in microglia following the insult, and Annexin V treatment inhibited radial glia breakage and engulfment by microglia. These data demonstrate a remarkable responsiveness of embryonic microglia to insults during gestation, a critical window for neurodevelopment.


Assuntos
Embrião de Mamíferos/metabolismo , Células Ependimogliais/fisiologia , Hipotálamo/embriologia , Hipotálamo/fisiologia , Microglia/fisiologia , Proteínas Proto-Oncogênicas/metabolismo , Receptores Proteína Tirosina Quinases/metabolismo , c-Mer Tirosina Quinase/metabolismo , Animais , Encéfalo/embriologia , Desenvolvimento Embrionário , Regulação da Expressão Gênica no Desenvolvimento , Imunidade Inata , Camundongos , Camundongos Transgênicos , Imagem Óptica/métodos , Receptor Tirosina Quinase Axl
2.
J Neuroinflammation ; 17(1): 146, 2020 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-32375817

RESUMO

BACKGROUND: Although historically microglia were thought to be immature in the fetal brain, evidence of purposeful interactions between these immune cells and nearby neural progenitors is becoming established. Here, we examined the influence of embryonic microglia on gliogenesis within the developing tuberal hypothalamus, a region later important for energy balance, reproduction, and thermoregulation. METHODS: We used immunohistochemistry to quantify the location and numbers of glial cells in the embryonic brain (E13.5-E17.5), as well as a pharmacological approach (i.e., PLX5622) to knock down fetal microglia. We also conducted cytokine and chemokine analyses on embryonic brains in the presence or absence of microglia, and a neurosphere assay to test the effects of the altered cytokines on hypothalamic progenitor behaviors. RESULTS: We identified a subpopulation of activated microglia that congregated adjacent to the third ventricle alongside embryonic Olig2+ neural progenitor cells (NPCs) that are destined to give rise to oligodendrocyte and astrocyte populations. In the absence of microglia, we observed an increase in Olig2+ glial progenitor cells that remained at the ventricle by E17.5 and a concomitant decrease of these Olig2+ cells in the mantle zone, indicative of a delay in migration of these precursor cells. A further examination of maturing oligodendrocytes in the hypothalamic grey and white matter area in the absence of microglia revealed migrating oligodendrocyte progenitor cells (OPCs) within the grey matter at E17.5, a time point when OPCs begin to slow their migration. Finally, quantification of cytokine and chemokine signaling in ex vivo E15.5 hypothalamic cultures +/- microglia revealed decreases in the protein levels of several cytokines in the absence of microglia. We assayed the influence of two downregulated cytokines (CCL2 and CXCL10) on neurosphere-forming capacity and lineage commitment of hypothalamic NPCs in culture and showed an increase in NPC proliferation as well as neuronal and oligodendrocyte differentiation. CONCLUSION: These data demonstrate that microglia influence gliogenesis in the developing tuberal hypothalamus.


Assuntos
Astrócitos/citologia , Hipotálamo/citologia , Hipotálamo/embriologia , Microglia/citologia , Oligodendroglia/citologia , Animais , Diferenciação Celular/fisiologia , Camundongos , Células-Tronco Neurais/citologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA