Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Dev Orig Health Dis ; 15: e5, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38563206

RESUMO

Early supplementation with oregano essential oil (EO) in milk replacer (MR) may improve growth, immune responses, the microbiota and the metabolome in dairy calves during pre-weaning and in adulthood. Sixteen female dairy calves (3 days of age) were divided in two groups (n = 8/group): the control group (no EO) and the EO group (0.23 ml of EO in MR during 45 days). After weaning, calves were kept in a feedlot and fed ad libitum. The animals were weighed, and blood and faecal samples were collected on days 3 (T0), 45 (T1) and 370 (T2) to measure the biochemical profile and characterise peripheral blood mononuclear cells (PBMCs; CD4+, CD8+, CD14+, CD21+ and WC1+), the metabolome and microbiota composition. The EO group only had greater average daily weight gain during the suckling (EO supplementation) period (P = 0.030). The EO group showed higher average CD14+ population (monocytes) values, a lower abundance of Ruminococcaceae UCG-014, Faecalibacterium, Blautia and Alloprevotella and increased abundances of Allistipes and Akkermansia. The modification of some metabolites in plasma, such as butyric acid, 3-indole-propionic acid and succinic acid, particularly at T1, are consistent with intestinal microbiota changes. The data suggest that early EO supplementation increases feed efficiency only during the suckling period with notable changes in the microbiota and plasma metabolome; however, not all of these changes can be considered desirable from a gut health point of view. Additional research studies is required to demonstrate that EOs are a viable natural alternative to antibiotics for improving calf growth performance and health.


Assuntos
Dieta , Óleos Voláteis , Animais , Bovinos , Feminino , Leite , Leucócitos Mononucleares , Ração Animal/análise , Desmame , Aumento de Peso , Metaboloma , Suplementos Nutricionais , Peso Corporal
2.
Front Physiol ; 13: 840065, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35309073

RESUMO

Early feed restriction of lambs may program animals to achieve reduced feed efficiency traits as a consequence of permanent mitochondrial dysfunction. The hypothesis at the background of the present study is that dietary administration of L-Carnitine (a compound that promotes the activation and transportation of fatty acids into the mitochondria) during the fattening period of early feed restricted lambs can: (a) improve the biochemical profile of early feed restricted lambs, (b) improve feed efficiency, (c) modulate the ruminal and intestinal microbiota, and (d) induce changes in the gastrointestinal mucosa, including the immune status. Twenty-two newborn male Merino lambs were raised under natural conditions but separated from the dams for 9 h daily to allow feed restriction during the suckling period. At weaning, lambs were assigned to a control group being fed ad libitum a complete pelleted diet during the fattening phase (CTRL, n = 11), whereas the second group (CARN, n = 11) received the same diet supplemented with 3 g of L-Carnitine/kg diet. The results revealed that even though L-Carnitine was absorbed, feed efficiency was not modified by dietary L-Carnitine during the fattening period (residual feed intake, p > 0.05), whereas ruminal fermentation was improved [total short-chain fatty acids (SCFAs), 113 vs. 154 mmol/l; p = 0.036]. Moreover, a trend toward increased concentration of butyrate in the ileal content (0.568 vs. 1.194 mmol/100 ml SCFA; p = 0.074) was observed. Other effects, such as reduced heart weight, lower levels of markers related to muscle metabolism or damage, improved renal function, and increased ureagenesis, were detected in the CARN group. Limited changes in the microbiota were also detected. These findings suggest that L-Carnitine may improve ruminal fermentation parameters and maintain both the balance of gut microbiota and the health of the animals. However, the improved ruminal fermentation and the consequent greater accumulation of intramuscular fat might have hidden the effects caused by the ability of dietary L-Carnitine to increase fatty acid oxidation at the mitochondrial level. This would explain the lack of effects of L-Carnitine supplementation on feed efficiency and points toward the need of testing lower doses, probably in the context of animals being fed in excess non-protein nitrogen.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA