Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Sci Food Agric ; 103(15): 7560-7568, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37421608

RESUMO

BACKGROUND: Chia oil represents the vegetable source with the highest content of omega-3 fatty acids. However, the incorporation of polyunsaturated fatty acids into food is limited due to their susceptibility toward oxidation. This investigation aimed to study the microencapsulation of chia oil (CO), using gallic acid (GA) crosslinked-soy protein isolate (SPI) as a wall material and its effect on its oxidative stability. RESULTS: Microcapsules presented a moisture content, water activity, and encapsulation efficiency of around 2.95-4.51% (wet basis); 0.17 and 59.76-71.65%, respectively. Rancimat tests showed that with higher GA content, the induction period increased up to 27.9 h. The storage test demonstrated that the microencapsulated oil with crosslinked wall material has lower values of hydroperoxides and higher induction times concerning the non-crosslinked oil. Finally, the fatty acid profile at this storage time indicated that microcapsules with GA did not have significant changes. In vitro digestion exhibited a reduction in the percentage of bioavailable oil for crosslinked microcapsules, but with no variations in its chemical quality, and an increase in the total polyphenols amount and antioxidant activity. CONCLUSION: The results obtained demonstrated that the microencapsulation of CO using SPI crosslinked with GA as wall material exerted a very important protective effect since a synergistic effect could be described between the microencapsulation effect and the antioxidant power of GA. © 2023 Society of Chemical Industry.


Assuntos
Salvia , Proteínas de Soja , Ácido Gálico , Salvia/química , Cápsulas/química , Óleos de Plantas/química , Antioxidantes/química
2.
J Sci Food Agric ; 98(13): 4903-4910, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29569241

RESUMO

BACKGROUND: Omega-3 and omega-6 fatty acids-rich oils suffer oxidation reactions that alter their chemical and organoleptic quality. Microencapsulation can be a powerful tool for protection against ambient conditions. In the present study, the addition of microencapsulated chia oil as an ingredient in bread preparations and its effect on the technological and chemical quality of breads was investigated. RESULTS: Microencapsulation of chia oil was carried out by freeze-drying with soy proteins as wall material and oil release was determined under in vitro gastric and intestinal conditions. Encapsulated oil-containing bread showed no differences in specific volume, average cell area, firmness and chewiness with respect to control bread. Unencapsulated oil-containing bread showed a marked increase in hydroperoxide values respect to control, whereas encapsulated oil-containing bread values were not affected by baking and bread storage. The fatty acid profiles showed a decrease of 13% and 16%, respectively, in α-linolenic acid in the encapsulated and unencapsulated oils with respect to bulk chia oil. Sensory analysis showed no significant differences between bread samples. CONCLUSION: The addition of encapsulated chia oil did not alter the technological quality of breads and prevented the formation of hydroperoxide radicals. A ration of encapsulated oil-containing bread contributes 60% of the recommended dietary intake of omega-3 fatty acids. © 2018 Society of Chemical Industry.


Assuntos
Pão/análise , Aditivos Alimentares/química , Manipulação de Alimentos/métodos , Óleos de Plantas/química , Salvia/química , Adulto , Ácidos Graxos Ômega-3/análise , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Paladar
3.
J Sci Food Agric ; 90(12): 1959-67, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20586084

RESUMO

Walnut (Juglans regia L.) is the most widespread tree nut in the world. There is a great diversity of genotypes differing in forestry, productivity, physical and chemical nut traits. Some of them have been evaluated as promising and may serve as germplasm sources for breeding. The nutritional importance of the nut is related to the seed (kernel). It is a nutrient-dense food mainly owing to its oil content (up to 740 g kg(-1) in some commercial varieties), which can be extracted easily by screw pressing and consumed without refining. Walnut oil composition is dominated largely by unsaturated fatty acids (mainly linoleic together with lesser amounts of oleic and linolenic acids). Minor components of walnut oil include tocopherols, phospholipids, sphingolipids, sterols, hydrocarbons and volatile compounds. Phenolic compounds, present at high levels in the seed coat but poorly extracted with the oil, have been extensively characterised and found to possess strong antioxidant properties. The oil extraction residue is rich in proteins (unusually high in arginine, glutamic and aspartic acids) and has been employed in the formulation of various functional food products. This review describes current scientific knowledge concerning walnut genetic resources and composition as well as by-product obtainment and characteristics.


Assuntos
Alimento Funcional , Juglans/química , Nozes/química , Óleos de Plantas/química , Antioxidantes/isolamento & purificação , Indústria Alimentícia/métodos , Variação Genética , Juglans/genética , Valor Nutritivo , Fenóis/isolamento & purificação , Proteínas de Plantas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA