Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nutrients ; 12(2)2020 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-32069871

RESUMO

Leptin is a hormone released by adipose tissue that plays a key role in the control of energy homeostasis through its binding to leptin receptors (LepR), mainly expressed in the hypothalamus. Most scientific evidence points to leptin's satiating effect being due to its dual capacity to promote the expression of anorexigenic neuropeptides and to reduce orexigenic expression in the hypothalamus. However, it has also been demonstrated that leptin can stimulate (i) thermogenesis in brown adipose tissue (BAT) and (ii) the browning of white adipose tissue (WAT). Since the demonstration of the importance of BAT in humans 10 years ago, its study has aroused great interest, mainly in the improvement of obesity-associated metabolic disorders through the induction of thermogenesis. Consequently, several strategies targeting BAT activation (mainly in rodent models) have demonstrated great potential to improve hyperlipidemias, hepatic steatosis, insulin resistance and weight gain, leading to an overall healthier metabolic profile. Here, we review the potential therapeutic ability of leptin to correct obesity and other metabolic disorders, not only through its satiating effect, but by also utilizing its thermogenic properties.


Assuntos
Leptina/metabolismo , Obesidade/metabolismo , Saciação/efeitos dos fármacos , Termogênese/efeitos dos fármacos , Tecido Adiposo Marrom/metabolismo , Tecido Adiposo Branco/metabolismo , Animais , Metabolismo Energético , Humanos , Hipotálamo/metabolismo , Receptores para Leptina/metabolismo
2.
Nat Commun ; 10(1): 4037, 2019 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-31492869

RESUMO

Increased body weight is a major factor that interferes with smoking cessation. Nicotine, the main bioactive compound in tobacco, has been demonstrated to have an impact on energy balance, since it affects both feeding and energy expenditure at the central level. Among the central actions of nicotine on body weight, much attention has been focused on its effect on brown adipose tissue (BAT) thermogenesis, though its effect on browning of white adipose tissue (WAT) is unclear. Here, we show that nicotine induces the browning of WAT through a central mechanism and that this effect is dependent on the κ opioid receptor (KOR), specifically in the lateral hypothalamic area (LHA). Consistent with these findings, smokers show higher levels of uncoupling protein 1 (UCP1) expression in WAT, which correlates with smoking status. These data demonstrate that central nicotine-induced modulation of WAT browning may be a target against human obesity.


Assuntos
Tecido Adiposo Marrom/efeitos dos fármacos , Hipotálamo/efeitos dos fármacos , Nicotina/farmacologia , Receptores Opioides kappa/metabolismo , Termogênese/efeitos dos fármacos , Tecido Adiposo Marrom/metabolismo , Tecido Adiposo Branco/efeitos dos fármacos , Tecido Adiposo Branco/metabolismo , Adulto , Animais , Peso Corporal/efeitos dos fármacos , Feminino , Estimulantes Ganglionares/administração & dosagem , Estimulantes Ganglionares/farmacologia , Humanos , Hipotálamo/metabolismo , Masculino , Camundongos Knockout , Pessoa de Meia-Idade , Nicotina/administração & dosagem , Ratos Sprague-Dawley , Receptores Opioides kappa/genética , Proteína Desacopladora 1/metabolismo
3.
Cell Metab ; 26(1): 212-229.e12, 2017 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-28683288

RESUMO

Thyroid hormones (THs) act in the brain to modulate energy balance. We show that central triiodothyronine (T3) regulates de novo lipogenesis in liver and lipid oxidation in brown adipose tissue (BAT) through the parasympathetic (PSNS) and sympathetic nervous system (SNS), respectively. Central T3 promotes hepatic lipogenesis with parallel stimulation of the thermogenic program in BAT. The action of T3 depends on AMP-activated protein kinase (AMPK)-induced regulation of two signaling pathways in the ventromedial nucleus of the hypothalamus (VMH): decreased ceramide-induced endoplasmic reticulum (ER) stress, which promotes BAT thermogenesis, and increased c-Jun N-terminal kinase (JNK) activation, which controls hepatic lipid metabolism. Of note, ablation of AMPKα1 in steroidogenic factor 1 (SF1) neurons of the VMH fully recapitulated the effect of central T3, pointing to this population in mediating the effect of central THs on metabolism. Overall, these findings uncover the underlying pathways through which central T3 modulates peripheral metabolism.


Assuntos
Metabolismo Energético , Hipotálamo/metabolismo , Proteína Quinase 8 Ativada por Mitógeno/metabolismo , Transdução de Sinais , Hormônios Tireóideos/metabolismo , Tecido Adiposo Marrom/metabolismo , Animais , Metabolismo dos Lipídeos , Fígado/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Ratos , Ratos Sprague-Dawley , Termogênese , Tri-Iodotironina/metabolismo
4.
Endocrinology ; 158(6): 1977-1984, 2017 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-28368510

RESUMO

3-Iodothyronamine (3-T1AM) is an endogenous thyroid hormone (TH)-derived metabolite that induces severe hypothermia in mice after systemic administration; however, the underlying mechanisms have remained enigmatic. We show here that the rapid 3-T1AM-induced loss in body temperature is a consequence of peripheral vasodilation and subsequent heat loss (e.g., over the tail surface). The condition is subsequently intensified by hypomotility and a lack of brown adipose tissue activation. Although the possible 3-T1AM targets trace amine-associated receptor 1 or α2a-adrenergic receptor were detected in tail artery and aorta respectively, myograph studies did not show any direct effect of 3-T1AM on vasodilation, suggesting that its actions are likely indirect. Intracerebroventricular application of 3-T1AM, however, replicated the phenotype of tail vasodilation and body temperature decline and led to neuronal activation in the hypothalamus, suggesting that the metabolite causes tail vasodilation through a hypothalamic signaling pathway. Consequently, the 3-T1AM response constitutes anapyrexia rather than hypothermia and closely resembles the heat-stress response mediated by hypothalamic temperature-sensitive neurons. Our results thus underline the well-known role of the hypothalamus as the body's thermostat and suggest an additional molecular link between TH signaling and the central control of body temperature.


Assuntos
Encéfalo/fisiologia , Cauda/irrigação sanguínea , Tironinas/farmacologia , Vasodilatação/efeitos dos fármacos , Animais , Regulação da Temperatura Corporal/efeitos dos fármacos , Encéfalo/efeitos dos fármacos , Hipotálamo/efeitos dos fármacos , Hipotálamo/metabolismo , Infusões Intraventriculares , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Transdução de Sinais/efeitos dos fármacos , Cauda/efeitos dos fármacos , Tironinas/administração & dosagem
5.
Diabetes ; 66(1): 87-99, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27634226

RESUMO

The chaperone GRP78/BiP (glucose-regulated protein 78 kDa/binding immunoglobulin protein) modulates protein folding in reply to cellular insults that lead to endoplasmic reticulum (ER) stress. This study investigated the role of hypothalamic GRP78 on energy balance, with particular interest in thermogenesis and browning of white adipose tissue (WAT). For this purpose, we used diet-induced obese rats and rats administered thapsigargin, and by combining metabolic, histologic, physiologic, pharmacologic, thermographic, and molecular techniques, we studied the effect of genetic manipulation of hypothalamic GRP78. Our data showed that rats fed a high-fat diet or that were centrally administered thapsigargin displayed hypothalamic ER stress, whereas genetic overexpression of GRP78 specifically in the ventromedial nucleus of the hypothalamus was sufficient to alleviate ER stress and to revert the obese and metabolic phenotype. Those effects were independent of feeding and leptin but were related to increased thermogenic activation of brown adipose tissue and induction of browning in WAT and could be reversed by antagonism of ß3 adrenergic receptors. This evidence indicates that modulation of hypothalamic GRP78 activity may be a potential strategy against obesity and associated comorbidities.


Assuntos
Tecido Adiposo Branco/efeitos dos fármacos , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Hipotálamo/efeitos dos fármacos , Hipotálamo/metabolismo , Obesidade/tratamento farmacológico , Obesidade/metabolismo , Tecido Adiposo Marrom/efeitos dos fármacos , Tecido Adiposo Marrom/metabolismo , Tecido Adiposo Branco/metabolismo , Animais , Western Blotting , Dieta Hiperlipídica , Ácidos Graxos não Esterificados/sangue , Imuno-Histoquímica , Masculino , Obesidade/sangue , Ratos , Ratos Sprague-Dawley , Reação em Cadeia da Polimerase em Tempo Real , Ácido Tauroquenodesoxicólico/uso terapêutico , Temperatura , Termogênese/efeitos dos fármacos
6.
Cell Rep ; 9(1): 366-377, 2014 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-25284795

RESUMO

Hypothalamic endoplasmic reticulum (ER) stress is a key mechanism leading to obesity. Here, we demonstrate that ceramides induce lipotoxicity and hypothalamic ER stress, leading to sympathetic inhibition, reduced brown adipose tissue (BAT) thermogenesis, and weight gain. Genetic overexpression of the chaperone GRP78/BiP (glucose-regulated protein 78 kDa/binding immunoglobulin protein) in the ventromedial nucleus of the hypothalamus (VMH) abolishes ceramide action by reducing hypothalamic ER stress and increasing BAT thermogenesis, which leads to weight loss and improved glucose homeostasis. The pathophysiological relevance of this mechanism is demonstrated in obese Zucker rats, which show increased hypothalamic ceramide levels and ER stress. Overexpression of GRP78 in the VMH of these animals reduced body weight by increasing BAT thermogenesis as well as decreasing leptin and insulin resistance and hepatic steatosis. Overall, these data identify a triangulated signaling network involving central ceramides, hypothalamic lipotoxicity/ER stress, and BAT thermogenesis as a pathophysiological mechanism of obesity.


Assuntos
Tecido Adiposo Marrom/metabolismo , Ceramidas/metabolismo , Hipotálamo/metabolismo , Obesidade/etiologia , Termogênese/fisiologia , Animais , Estresse do Retículo Endoplasmático , Resistência à Insulina/fisiologia , Masculino , Obesidade/metabolismo , Ratos , Ratos Sprague-Dawley , Ratos Zucker , Redução de Peso
7.
Best Pract Res Clin Endocrinol Metab ; 28(5): 703-12, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25256765

RESUMO

Over the past few decades, obesity and its related metabolic disorders have increased at an epidemic rate in the developed and developing world. New signals and factors involved in the modulation of energy balance and metabolism are continuously being discovered, providing potential novel drug targets for the treatment of metabolic disease. A parallel strategy is to better understand how hormonal signals, with an already established role in energy metabolism, work, and how manipulation of the pathways involved may lead to amelioration of metabolic dysfunction. The thyroid hormones belong to the latter category, with dysregulation of the thyroid axis leading to marked alterations in energy balance. The potential of thyroid hormones in the treatment of obesity has been known for decades, but their therapeutic use has been hampered because of side-effects. Data gleaned over the past few years, however, have uncovered new features at the mechanisms of action involved in thyroid hormones. Sophisticated neurobiological approaches have allowed the identification of specific energy sensors, such as AMP-activated protein kinase and mechanistic target of rapamycin, acting in specific groups of hypothalamic neurons, mediating many of the effects of thyroid hormones on food intake, energy expenditure, glucose, lipid metabolism, and cardiovascular function. More extensive knowledge about these molecular mechanisms will be of great relevance for the treatment of obesity and metabolic syndrome.


Assuntos
Metabolismo Energético/fisiologia , Hipotálamo/metabolismo , Transdução de Sinais/fisiologia , Hormônios Tireóideos/metabolismo , Proteínas Quinases Ativadas por AMP/metabolismo , Animais , Homeostase/fisiologia , Humanos , Metabolismo dos Lipídeos/fisiologia , Obesidade/metabolismo , Serina-Treonina Quinases TOR/metabolismo
8.
Cell Metab ; 20(1): 41-53, 2014 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-24856932

RESUMO

Estrogens play a major role in the modulation of energy balance through central and peripheral actions. Here, we demonstrate that central action of estradiol (E2) inhibits AMP-activated protein kinase (AMPK) through estrogen receptor alpha (ERα) selectively in the ventromedial nucleus of the hypothalamus (VMH), leading to activation of thermogenesis in brown adipose tissue (BAT) through the sympathetic nervous system (SNS) in a feeding-independent manner. Genetic activation of AMPK in the VMH prevented E2-induced increase in BAT-mediated thermogenesis and weight loss. Notably, fluctuations in E2 levels during estrous cycle also modulate this integrated physiological network. Together, these findings demonstrate that E2 regulation of the VMH AMPK-SNS-BAT axis is an important determinant of energy balance and suggest that dysregulation in this axis may account for the common changes in energy homeostasis and obesity linked to dysfunction of the female gonadal axis.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Tecido Adiposo Marrom/metabolismo , Estradiol/farmacologia , Hipotálamo/efeitos dos fármacos , Termogênese/efeitos dos fármacos , Proteínas Quinases Ativadas por AMP/antagonistas & inibidores , Proteínas Quinases Ativadas por AMP/química , Animais , Metabolismo Energético/efeitos dos fármacos , Receptor alfa de Estrogênio/metabolismo , Feminino , Hipotálamo/enzimologia , Hipotálamo/metabolismo , Ovário/lesões , Ratos , Ratos Sprague-Dawley , Ratos Wistar , Sistema Nervoso Simpático/metabolismo
9.
Endocrinology ; 154(10): 3589-98, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23861376

RESUMO

Fifteen years ago orexins were identified as central regulators of energy homeostasis. Since then, that concept has evolved considerably and orexins are currently considered, besides orexigenic neuropeptides, key modulators of sleep-wake cycle and neuroendocrine function. Little is known, however, about the effect of the neuroendocrine milieu on orexins' effects on energy balance. We therefore investigated whether hypothalamic-pituitary axes have a role in the central orexigenic action of orexin A (OX-A) by centrally injecting hypophysectomized, adrenalectomized, gonadectomized (male and female), hypothyroid, and GH-deficient dwarf rats with OX-A. Our data showed that the orexigenic effect of OX-A is fully maintained in adrenalectomized and gonadectomized (females and males) rats, slightly reduced in hypothyroid rats, and totally abolished in hypophysectomized and dwarf rats when compared with their respective vehicle-treated controls. Of note, loss of the OX-A effect on feeding was associated with a blunted OX-A-induced increase in the expression of either neuropeptide Y or its putative regulator, the transcription factor cAMP response-element binding protein, as well as its phosphorylated form, in the arcuate nucleus of the hypothalamus of hypophysectomized and dwarf rats. Overall, this evidence suggests that the orexigenic action of OX-A depends on an intact GH axis and that this neuroendocrine feedback loop may be of interest in the understanding of orexins action on energy balance and GH deficiency.


Assuntos
Regulação do Apetite , Hormônio do Crescimento/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Neurônios/metabolismo , Neuropeptídeos/metabolismo , Hipófise/metabolismo , Receptores da Somatotropina/metabolismo , Adrenalectomia/efeitos adversos , Animais , Castração/efeitos adversos , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/biossíntese , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Nanismo Hipofisário/metabolismo , Nanismo Hipofisário/fisiopatologia , Comportamento Alimentar , Feminino , Hipofisectomia/efeitos adversos , Hipotálamo/metabolismo , Hipotireoidismo/metabolismo , Hipotireoidismo/fisiopatologia , Injeções Intraventriculares , Peptídeos e Proteínas de Sinalização Intracelular/administração & dosagem , Masculino , Neuropeptídeo Y/biossíntese , Neuropeptídeo Y/metabolismo , Neuropeptídeos/administração & dosagem , Orexinas , Ratos , Ratos Endogâmicos Lew , Ratos Sprague-Dawley
10.
Brain Res ; 1450: 40-8, 2012 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-22425186

RESUMO

Thyroid hormones play an important role in the regulation of energy balance, sleep and emotional behaviors. Neuropeptide S (NPS) is a recently discovered neuropeptide, regulating feeding, sleep and anxiety. Here, we examined the effect of hyperthyroidism on the gene and protein expression of neuropeptide S and its receptor (NPS-R) in the hypothalamus, brainstem and amygdala of rats. Our results showed that the expression of NPS and NPS-R was differentially modulated by hyperthyroidism in the rat brain. NPS and NPS-R mRNA and protein levels were decreased in the hypothalamus of hyperthyroid rats. Conversely NPS-R expression was highly increased in the brainstem and NPS and NPS-R expression were unchanged in the amygdala of these rats. These data suggest that changes in anxiety and food intake patterns observed in hyperthyroidism could be associated with changes in the expression of NPS and NPS-R. Thus, the NPS/NPS-R system may be involved in several hyperthyroidism-associated comorbidities.


Assuntos
Tonsila do Cerebelo/metabolismo , Tronco Encefálico/metabolismo , Hipertireoidismo/metabolismo , Hipotálamo/metabolismo , Neuropeptídeos/metabolismo , Animais , Ingestão de Alimentos/genética , Expressão Gênica , Hipertireoidismo/genética , Masculino , Neuropeptídeos/genética , Ratos , Ratos Sprague-Dawley , Sono/genética
11.
J Pathol ; 227(2): 209-22, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22294347

RESUMO

Hyperthyroidism is characterized in rats by increased energy expenditure and marked hyperphagia. Alterations of thermogenesis linked to hyperthyroidism are associated with dysregulation of hypothalamic AMPK and fatty acid metabolism; however, the central mechanisms mediating hyperthyroidism-induced hyperphagia remain largely unclear. Here, we demonstrate that hyperthyroid rats exhibit marked up-regulation of the hypothalamic mammalian target of rapamycin (mTOR) signalling pathway associated with increased mRNA levels of agouti-related protein (AgRP) and neuropeptide Y (NPY), and decreased mRNA levels of pro-opiomelanocortin (POMC) in the arcuate nucleus of the hypothalamus (ARC), an area where mTOR co-localizes with thyroid hormone receptor-α (TRα). Central administration of thyroid hormone (T3) or genetic activation of thyroid hormone signalling in the ARC recapitulated hyperthyroidism effects on feeding and the mTOR pathway. In turn, central inhibition of mTOR signalling with rapamycin in hyperthyroid rats reversed hyperphagia and normalized the expression of ARC-derived neuropeptides, resulting in substantial body weight loss. The data indicate that in the hyperthyroid state, increased feeding is associated with thyroid hormone-induced up-regulation of mTOR signalling. Furthermore, our findings that different neuronal modulations influence food intake and energy expenditure in hyperthyroidism pave the way for a more rational design of specific and selective therapeutic compounds aimed at reversing the metabolic consequences of this disease.


Assuntos
Ingestão de Alimentos , Comportamento Alimentar , Hiperfagia/etiologia , Hipertireoidismo/complicações , Hipotálamo/enzimologia , Transdução de Sinais , Serina-Treonina Quinases TOR/metabolismo , Proteínas Quinases Ativadas por AMP/metabolismo , Proteína Relacionada com Agouti/genética , Animais , Modelos Animais de Doenças , Ingestão de Alimentos/efeitos dos fármacos , Comportamento Alimentar/efeitos dos fármacos , Hiperfagia/enzimologia , Hiperfagia/genética , Hiperfagia/fisiopatologia , Hiperfagia/prevenção & controle , Hipertireoidismo/induzido quimicamente , Hipertireoidismo/enzimologia , Hipertireoidismo/genética , Hipertireoidismo/fisiopatologia , Hipotálamo/efeitos dos fármacos , Hipotálamo/fisiopatologia , Masculino , Vias Neurais/efeitos dos fármacos , Vias Neurais/enzimologia , Neuropeptídeo Y/genética , Fosforilação , Pró-Opiomelanocortina/genética , Inibidores de Proteínas Quinases/farmacologia , RNA Mensageiro/metabolismo , Ratos , Ratos Sprague-Dawley , Transdução de Sinais/efeitos dos fármacos , Sirolimo/farmacologia , Serina-Treonina Quinases TOR/antagonistas & inibidores , Receptores alfa dos Hormônios Tireóideos/metabolismo , Fatores de Tempo , Tri-Iodotironina , Redução de Peso
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA