Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Sci Rep ; 10(1): 10659, 2020 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-32606354

RESUMO

In human blood, oxygen is mainly transported by red blood cells. Accordingly, the dissolved oxygen level in plasma is expected to be limited, although it has not been quantified yet. Here, by developing dedicated methods and tools, we determined that human plasma pO2 = 8.4 mmHg (1.1% O2). Oxygen solubility in plasma was believed to be similar to water. Here we reveal that plasma has an additional ascorbate-dependent oxygen-reduction activity. Plasma experimental oxygenation oxidizes ascorbate (49.5 µM in fresh plasma vs < 2 µM in oxidized plasma) and abolishes this capacity, which is restored by ascorbate supplementation. We confirmed these results in vivo, showing that the plasma pO2 is significantly higher in ascorbate-deficient guinea pigs (Ascorbateplasma < 2 µM), compared to control (Ascorbateplasma > 15 µM). Plasma low oxygen level preserves the integrity of oxidation-sensitive components such as ubiquinol. Circulating leucocytes are well adapted to these conditions, since the abundance of their mitochondrial network is limited. These results shed a new light on the importance of oxygen exposure on leucocyte biological study, in regards with the reducing conditions they encounter in vivo; but also, on the manipulation of blood products to improve their integrity and potentially improve transfusions' efficacy.


Assuntos
Ácido Ascórbico/sangue , Ácido Ascórbico/metabolismo , Oxigênio/sangue , Plasma/metabolismo , Animais , Linhagem Celular , Linhagem da Célula/fisiologia , Eritrócitos/metabolismo , Cobaias , Células HEK293 , Células Hep G2 , Humanos , Hipóxia/sangue , Hipóxia/metabolismo , Oxirredução , Solubilidade , Ubiquinona/análogos & derivados , Ubiquinona/metabolismo
2.
Blood ; 128(7): 993-1002, 2016 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-27402974

RESUMO

Functional studies of human neutrophils and their transfusion for clinical purposes have been hampered by their short life span after isolation. Here, we demonstrate that neutrophil viability is maintained for 20 hours in culture media at 37°C under anoxic conditions with 3 mM glucose and 32 µg/mL dimethyloxalylglycine supplementation, as evidenced by stabilization of Mcl-1, proliferating cell nuclear antigen (PCNA), and pro-caspase-3. Notably, neutrophil morphology (nucleus shape and cell-surface markers) and functions (phagocytosis, degranulation, calcium release, chemotaxis, and reactive oxygen species production) were comparable to blood circulating neutrophils. The observed extension in neutrophil viability was reversed upon exposure to oxygen. Extending neutrophil life span allowed efficient transfection of plasmids (40% transfection efficiency) and short interfering RNA (interleukin-8, PCNA, and Bax), as a validation of effective and functional genetic manipulation of neutrophils both in vitro and in vivo. In vivo, transfusion of conditioned neutrophils in a neutropenic guinea pig model increased bacterial clearance of Shigella flexneri upon colonic infection, strongly suggesting that these conditioned neutrophils might be suitable for transfusion purposes. In summary, such conditioning of neutrophils in vitro should facilitate their study and offer new opportunities for genetic manipulation and therapeutic use.


Assuntos
Glucose/farmacologia , Hipóxia/patologia , Neutrófilos/citologia , Animais , Anti-Infecciosos/metabolismo , Apoptose/efeitos dos fármacos , Biomarcadores/metabolismo , Transfusão de Sangue , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Separação Celular , Forma Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Cobaias , Humanos , Neutrófilos/efeitos dos fármacos , Neutrófilos/ultraestrutura , Oxigênio/farmacologia , Antígeno Nuclear de Célula em Proliferação/metabolismo , Transfecção , Proteína X Associada a bcl-2/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA