Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Métodos Terapêuticos e Terapias MTCI
Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Diabetologia ; 57(4): 819-31, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24374551

RESUMO

AIMS/HYPOTHESIS: Obesity is associated with ageing and increased energy intake, while restriction of energy intake improves health and longevity in multiple organisms; the NAD(+)-dependent deacetylase sirtuin 1 (SIRT1) is implicated in this process. Pro-opiomelanocortin (POMC) and agouti-related peptide (AgRP) neurons in the arcuate nucleus (ARC) of the hypothalamus are critical for energy balance regulation, and the level of SIRT1 protein decreases with age in the ARC. In the current study we tested whether conditional Sirt1 overexpression in mouse POMC or AgRP neurons prevents age-associated weight gain and diet-induced obesity. METHODS: We targeted Sirt1 cDNA sequence into the Rosa26 locus and generated conditional Sirt1 knock-in mice. These mice were crossed with mice harbouring either Pomc-Cre or Agrp-Cre and the metabolic variables, food intake, energy expenditure and sympathetic activity in adipose tissue of the resultant mice were analysed. We also used a hypothalamic cell line to investigate the molecular mechanism by which Sirt1 overexpression modulates leptin signalling. RESULTS: Conditional Sirt1 overexpression in mouse POMC or AgRP neurons prevented age-associated weight gain; overexpression in POMC neurons stimulated energy expenditure via increased sympathetic activity in adipose tissue, whereas overexpression in AgRP neurons suppressed food intake. SIRT1 improved leptin sensitivity in hypothalamic neurons in vitro and in vivo by downregulating protein-tyrosine phosphatase 1B, T cell protein-tyrosine phosphatase and suppressor of cytokine signalling 3. However, these phenotypes were absent in mice consuming a high-fat, high-sucrose diet due to decreases in ARC SIRT1 protein and hypothalamic NAD(+) levels. CONCLUSIONS/INTERPRETATION: ARC SIRT1 is a negative regulator of energy balance, and decline in ARC SIRT1 function contributes to disruption of energy homeostasis by ageing and diet-induced obesity.


Assuntos
Hipotálamo/metabolismo , Leptina/farmacologia , Sirtuína 1/metabolismo , Aumento de Peso/fisiologia , Animais , Calorimetria Indireta , Genótipo , Hipotálamo/efeitos dos fármacos , Imuno-Histoquímica , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Reação em Cadeia da Polimerase , Sirtuína 1/genética , Aumento de Peso/genética
2.
Endocr J ; 60(10): 1117-29, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23995917

RESUMO

Miglitol is an alpha-glucosidase inhibitor that improves post-prandial hyperglycemia, and it is the only drug in its class that enters the bloodstream. Anecdotally, miglitol lowers patient body weight more effectively than other alpha-glucosidase inhibitors, but the precise mechanism has not been addressed. Therefore, we analyzed the anti-obesity effects of miglitol in mice and in the HB2 brown adipocyte cell line. Miglitol prevented diet-induced obesity by stimulating energy expenditure without affecting food intake in mice. Long-term miglitol treatment dose-dependently prevented diet-induced obesity and induced mitochondrial gene expression in brown adipose tissue. The anti-obesity effect was independent of preventing carbohydrate digestion in the gastrointestinal tract. Miglitol effectively stimulated energy expenditure in mice fed a high-fat high-monocarbohydrate diet, and intraperitoneal injection of miglitol was sufficient to stimulate energy expenditure in mice. Acarbose, which is a non-absorbable alpha glucosidase inhibitor, also prevented diet-induced obesity, but through a different mechanism: it did not stimulate energy expenditure, but caused indigestion, leading to less energy absorption. Miglitol promoted adrenergic signaling in brown adipocytes in vitro. These data indicate that circulating miglitol stimulates brown adipose tissue and increases energy expenditure, thereby preventing diet-induced obesity. Further optimizing miglitol's effect on brown adipose tissue could lead to a novel anti-obesity drug.


Assuntos
1-Desoxinojirimicina/análogos & derivados , Tecido Adiposo Marrom/efeitos dos fármacos , Tecido Adiposo Marrom/fisiologia , Fármacos Antiobesidade/uso terapêutico , Metabolismo Energético/efeitos dos fármacos , Hipoglicemiantes/uso terapêutico , Obesidade/prevenção & controle , 1-Desoxinojirimicina/farmacologia , Acarbose/farmacologia , Adipócitos Marrons/metabolismo , Animais , Linhagem Celular , Dieta Hiperlipídica , Carboidratos da Dieta/administração & dosagem , Carboidratos da Dieta/metabolismo , Digestão/efeitos dos fármacos , Ingestão de Alimentos/efeitos dos fármacos , Inibidores de Glicosídeo Hidrolases , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Consumo de Oxigênio/efeitos dos fármacos , Receptores Adrenérgicos beta/fisiologia , Transdução de Sinais/efeitos dos fármacos
3.
J Biol Chem ; 286(35): 30455-30461, 2011 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-21730067

RESUMO

Among the eukaryotes only plants and a number of fungi are able to synthesize biotin. Although initial events leading to the biosynthesis of biotin remain largely unknown, the final steps are known to occur in the mitochondria. Here we deleted the Aopex5 and Aopex7 genes encoding the receptors for peroxisomal targeting signals PTS1 and PTS2, respectively, in the filamentous fungus Aspergillus oryzae. In addition to exhibiting defects in the peroxisomal targeting of either PTS1 or PTS2 proteins, the deletion strains also displayed growth defects on minimal medium containing oleic acid as the sole carbon source. Unexpectedly, these peroxisomal transport-deficient strains also exhibited growth defects on minimal medium containing glucose as the sole carbon source that were remediated by the addition of biotin and its precursors, including 7-keto-8-aminopelargonic acid (KAPA). Genome database searches in fungi and plants revealed that BioF protein/KAPA synthase, one of the biotin biosynthetic enzymes, has a PTS1 sequence at the C terminus. Fungal ΔbioF strains expressing the fungal and plant BioF proteins lacking PTS1 still exhibited growth defects in the absence of biotin, indicating that peroxisomal targeting of KAPA synthase is crucial for the biotin biosynthesis. Furthermore, in the plant Arabidopsis thaliana, AtBioF localized to the peroxisomes through recognition of its PTS1 sequence, suggesting involvement of peroxisomes in biotin biosynthesis in plants. Taken together we demonstrate a novel role for peroxisomes in biotin biosynthesis and suggest the presence of as yet unidentified peroxisomal proteins that function in the earlier steps of biotin biosynthesis.


Assuntos
Aminoácidos/farmacologia , Arabidopsis/metabolismo , Aspergillus oryzae/metabolismo , Biotina/biossíntese , Peroxissomos/metabolismo , Biotina/química , Carbono/química , DNA Complementar/metabolismo , Deleção de Genes , Genoma Fúngico , Genoma de Planta , Glucose/metabolismo , Microscopia de Fluorescência/métodos , Mitocôndrias/metabolismo , Ácido Oleico/química
4.
FEMS Microbiol Lett ; 244(1): 41-6, 2005 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-15727819

RESUMO

In filamentous fungi, the repertoire of promoters available for exogenous gene expression is limited. Here, we report the development and application of the thiamine-regulatable thiA promoter (PthiA) in Aspergillus oryzae as a tool for molecular biological studies. When PthiA was used to express the enhanced green fluorescent protein (EGFP) reporter, the fluorescence in the mycelia was either repressed or induced in the presence or absence of thiamine in the culture media, respectively. In addition, the expression level from the thiA promoter can be controlled by the concentration of external thiamine. Thiamine content in the media did not affect mycelial morphology, making the thiA promoter more useful compared with alcA and amyB promoters that depend on carbon source for regulation. Moreover, as the A. oryzae thiA promoter was also regulated by thiamine in A. nidulans, this promoter can be further applied as an inducible promoter in other Aspergilli.


Assuntos
Aspergillus oryzae/genética , Proteínas Fúngicas/genética , Genes Fúngicos , Regiões Promotoras Genéticas , Aspergillus oryzae/efeitos dos fármacos , Aspergillus oryzae/metabolismo , Sequência de Bases , DNA Complementar/genética , DNA Fúngico/genética , Regulação Fúngica da Expressão Gênica/efeitos dos fármacos , Proteínas de Fluorescência Verde/genética , Processamento Pós-Transcricional do RNA , Proteínas Recombinantes/genética , Tiamina/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA