Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Métodos Terapêuticos e Terapias MTCI
Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-30478163

RESUMO

As a consequence of emerging numbers of vulvovaginitis cases caused by azole-resistant and biofilm-forming Candida species, fast and efficient treatment of this infection has become challenging. The problem is further exacerbated by the severe side effects of azoles as long-term-use medications in the recurrent form. There is therefore an increasing demand for novel and safely applicable effective antifungal therapeutic strategies. The small, cysteine-rich, and cationic antifungal proteins from filamentous ascomycetes are potential candidates, as they inhibit the growth of several Candida spp. in vitro; however, no information is available about their in vivo antifungal potency against yeasts. In the present study, we investigated the possible therapeutic application of one of their representatives in the treatment of vulvovaginal candidiasis, Neosartorya fischeri antifungal protein 2 (NFAP2). NFAP2 inhibited the growth of a fluconazole (FLC)-resistant Candida albicans strain isolated from a vulvovaginal infection, and it was effective against both planktonic cells and biofilm in vitro We observed that the fungal cell-killing activity of NFAP2 is connected to its pore-forming ability in the cell membrane. NFAP2 did not exert cytotoxic effects on primary human keratinocytes and dermal fibroblasts at the MIC in vitro. In vivo murine vulvovaginitis model experiments showed that NFAP2 significantly decreases the number of FLC-resistant C. albicans cells, and combined application with FLC enhances the efficacy. These results suggest that NFAP2 provides a feasible base for the development of a fundamental new, safely applicable mono- or polytherapeutic topical agent for the treatment of superficial candidiasis.


Assuntos
Antifúngicos/metabolismo , Antifúngicos/uso terapêutico , Candidíase Vulvovaginal/tratamento farmacológico , Neosartorya/metabolismo , Animais , Candidíase Vulvovaginal/microbiologia , Farmacorresistência Fúngica , Feminino , Citometria de Fluxo , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Testes de Sensibilidade Microbiana
2.
BMC Microbiol ; 11: 209, 2011 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-21943024

RESUMO

BACKGROUND: The antifungal protein AFPNN5353 is a defensin-like protein of Aspergillus giganteus. It belongs to a group of secretory proteins with low molecular mass, cationic character and a high content of cysteine residues. The protein inhibits the germination and growth of filamentous ascomycetes, including important human and plant pathogens and the model organsims Aspergillus nidulans and Aspergillus niger. RESULTS: We determined an AFPNN5353 hypersensitive phenotype of non-functional A. nidulans mutants in the protein kinase C (Pkc)/mitogen-activated protein kinase (Mpk) signalling pathway and the induction of the α-glucan synthase A (agsA) promoter in a transgenic A. niger strain which point at the activation of the cell wall integrity pathway (CWIP) and the remodelling of the cell wall in response to AFPNN5353. The activation of the CWIP by AFPNN5353, however, operates independently from RhoA which is the central regulator of CWIP signal transduction in fungi.Furthermore, we provide evidence that calcium (Ca2+) signalling plays an important role in the mechanistic function of this antifungal protein. AFPNN5353 increased about 2-fold the cytosolic free Ca2+ ([Ca2+]c) of a transgenic A. niger strain expressing codon optimized aequorin. Supplementation of the growth medium with CaCl2 counteracted AFPNN5353 toxicity, ameliorated the perturbation of the [Ca2+]c resting level and prevented protein uptake into Aspergillus sp. cells. CONCLUSIONS: The present study contributes new insights into the molecular mechanisms of action of the A. giganteus antifungal protein AFPNN5353. We identified its antifungal activity, initiated the investigation of pathways that determine protein toxicity, namely the CWIP and the Ca2+ signalling cascade, and studied in detail the cellular uptake mechanism in sensitive target fungi. This knowledge contributes to define new potential targets for the development of novel antifungal strategies to prevent and combat infections of filamentous fungi which have severe negative impact in medicine and agriculture.


Assuntos
Aspergillus nidulans/metabolismo , Aspergillus niger/metabolismo , Cálcio/metabolismo , Parede Celular/metabolismo , Proteínas Fúngicas/farmacologia , Sequência de Aminoácidos , Aspergillus/química , Aspergillus/genética , Aspergillus/metabolismo , Aspergillus nidulans/efeitos dos fármacos , Aspergillus nidulans/genética , Aspergillus nidulans/crescimento & desenvolvimento , Aspergillus niger/efeitos dos fármacos , Aspergillus niger/genética , Aspergillus niger/crescimento & desenvolvimento , Parede Celular/efeitos dos fármacos , Parede Celular/genética , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Dados de Sequência Molecular , Alinhamento de Sequência
3.
Eukaryot Cell ; 9(9): 1374-82, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20622001

RESUMO

The antifungal protein PAF from Penicillium chrysogenum exhibits growth-inhibitory activity against a broad range of filamentous fungi. Evidence from this study suggests that disruption of Ca(2+) signaling/homeostasis plays an important role in the mechanistic basis of PAF as a growth inhibitor. Supplementation of the growth medium with high Ca(2+) concentrations counteracted PAF toxicity toward PAF-sensitive molds. By using a transgenic Neurospora crassa strain expressing codon-optimized aequorin, PAF was found to cause a significant increase in the resting level of cytosolic free Ca(2+) ([Ca(2+)](c)). The Ca(2+) signatures in response to stimulation by mechanical perturbation or hypo-osmotic shock were significantly changed in the presence of PAF. BAPTA [bis-(aminophenoxy)-ethane-N,N,N',N'-tetraacetic acid], a Ca(2+) selective chelator, ameliorated the PAF toxicity in growth inhibition assays and counteracted PAF induced perturbation of Ca(2+) homeostasis. These results indicate that extracellular Ca(2+) was the major source of these PAF-induced effects. The L-type Ca(2+) channel blocker diltiazem disrupted Ca(2+) homeostasis in a similar manner to PAF. Diltiazem in combination with PAF acted additively in enhancing growth inhibition and accentuating the change in Ca(2+) signatures in response to external stimuli. Notably, both PAF and diltiazem increased the [Ca(2+)](c) resting level. However, experiments with an aequorin-expressing Deltacch-1 deletion strain of N. crassa indicated that the L-type Ca(2+) channel CCH-1 was not responsible for the observed PAF-induced elevation of the [Ca(2+)](c) resting level. This study is the first demonstration of the perturbation of fungal Ca(2+) homeostasis by an antifungal protein from a filamentous ascomycete and provides important new insights into the mode of action of PAF.


Assuntos
Antifúngicos/farmacologia , Cálcio/metabolismo , Proteínas Fúngicas/farmacologia , Neurospora crassa/efeitos dos fármacos , Neurospora crassa/metabolismo , Antifúngicos/metabolismo , Proteínas Fúngicas/metabolismo , Neurospora crassa/genética , Neurospora crassa/crescimento & desenvolvimento , Penicillium chrysogenum/química , Penicillium chrysogenum/metabolismo , Transdução de Sinais/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA