Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Br J Nutr ; 130(4): 616-632, 2023 08 28.
Artigo em Inglês | MEDLINE | ID: mdl-36627815

RESUMO

Methionine (MET) supplementation is a current strategy to achieve shrimp requirement. Notwithstanding, the efficiency of the precisely formulated feeds can be diminished since shrimps are slow eaters and masticate feed externally that results in nutrient leaching. In this regard, a methionine dipeptide (DL-methionyl DL-methionine) benefits the feed industry by reducing MET water solubility while increasing its bioavailability. Therefore, the effects of feeding whiteleg shrimp (Penaeus vannamei) with increasing levels of methionine dipeptide were evaluated on zootechnical performance and methionine-, immune- and antioxidant-related pathways. A 74 d growth trial was conducted by feeding a control diet and four diets supplemented with AQUAVI® Met-Met at 0·08, 0·12, 0·24 and 0·32% of DM. Diet digestibility, body amino acids (AA) composition and nitrogen metabolites, metabolic enzymes, oxidative status and gene expression were evaluated. It can be concluded that graded dietary increase of methionine dipeptide up to 0·24 % for 74 d translated in significant gains on the growth performance, feed efficiency, nutrient and nitrogen gain and shrimp survival. Moreover, it was showed that Met-Met dietary spare leads to an improvement of free-AA pool and nitrogen metabolites concentration and reduces the signs of oxidative stress. Finally, in a closer look to the MET-related pathways passive to be altered by Met-Met spare, a clear modulation of the described antioxidant and cell proliferation routes was detected.


Assuntos
Metionina , Penaeidae , Animais , Metionina/farmacologia , Antioxidantes/metabolismo , Ração Animal/análise , Suplementos Nutricionais , Racemetionina , Dieta , Nitrogênio
2.
Br J Nutr ; 127(2): 202-213, 2022 01 28.
Artigo em Inglês | MEDLINE | ID: mdl-33749566

RESUMO

Commercial diets for tilapia juveniles contain high levels of plant protein sources. Soybean meal has been utilised due to its high protein content; however, soy-based diets are limited in methionine (Met) and require its supplementation to fulfil fish requirements. dl-Methinone (dl-Met) and Ca bis-methionine hydroxyl analogue (MHA-Ca) are synthetic Met sources supplemented in aquafeeds, which may differ in biological efficiency due to structural differences. The present study evaluated the effect of both methionine sources on metabolism and growth of Nile tilapia. A growth trial was performed using three isonitrogenous and isoenergetic diets, containing plant ingredients as protein sources: DLM and MHA diets were supplemented on equimolar levels of Met, while REF diet was not supplemented. Hepatic free Met and one-carbon metabolites were determined in fish fed for 57 d. Metabolism of dl-Met and MHA was analysed by an in vivo time-course trial using 14C-labelled tracers. Only dl-Met supplementation significantly increased final body weight and improved feed conversion and protein efficiency ratios compared with the REF diet. Our findings indicate that Met in DLM fed fish follows the transsulphuration pathway, while in fish fed MHA and REF diets it is remethylated. The in vivo trial revealed that 14C-dl-Met is absorbed faster and more retained than 14C-MHA, resulting in a greater availability of free Met in the tissues when fish is fed with DLM diet. Our study indicates that dietary dl-Met supplementation improves growth performance and N retention, and that Met absorption and utilisation are influenced by the dietary source in tilapia juveniles.


Assuntos
Ração Animal , Ciclídeos , Ração Animal/análise , Animais , Dieta/veterinária , Suplementos Nutricionais/análise , Metionina/metabolismo
3.
Artigo em Inglês | MEDLINE | ID: mdl-33482339

RESUMO

DL-methionine (DL-Met) and its analogue DL-2-hydroxy-4-(methylthio) butanoic acid (DL-methionine hydroxyl analogue or DL-MHA) have been used as nutritional supplements in the diets of farmed raised animals. Knowledge of the intestinal transport mechanisms involved in these products is important for developing dietary strategies. This review provides updated information of the expression, function, and transport kinetics in the intestine of known Met-linked transporters along with putative MHA-linked transporters. As a neutral amino acid (AA), the transport of DL-Met is facilitated by multiple apical sodium-dependent/-independent high-/low-affinity transporters such as ASCT2, B0AT1 and rBAT/b0,+AT. The basolateral transport largely relies on the rate-limiting uniporter LAT4, while the presence of the basolateral antiporter y+LAT1 is probably necessary for exchanging intracellular cationic AAs and Met in the blood. In contrast, the intestinal transport kinetics of DL-MHA have been scarcely studied. DL-MHA transport is generally accepted to be mediated simply by the proton-dependent monocarboxylate transporter MCT1. However, in-depth mechanistic studies have indicated that DL-MHA transport is also achieved through apical sodium monocarboxylate transporters (SMCTs). In any case, reliance on either a proton or sodium gradient would thus require energy input for both Met and MHA transport. This expanding knowledge of the specific transporters involved now allows us to assess the effect of dietary ingredients on the expression and function of these transporters. Potentially, the resulting information could be furthered with selective breeding to reduce overall feed costs.


Assuntos
Fenômenos Fisiológicos da Nutrição Animal , Suplementos Nutricionais , Mucosa Intestinal/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Metionina/administração & dosagem , Ração Animal/análise , Animais , Metionina/análogos & derivados , Metionina/farmacocinética
4.
Artigo em Inglês | MEDLINE | ID: mdl-32712085

RESUMO

The aim of this study was to identify the unknown transport mechanism of the extensively used monocarboxylate methionine feed supplement DL-methionine hydroxy analogue (DL-MHA) in rainbow trout intestine. Transport across the pyloric caeca (PC), midgut (MG), and hindgut (HG) regions were kinetically studied in Na+- and H+-dependent manners. Gene expression of monocarboxylate (MCTs) and sodium monocarboxylate transporters (SMCTs) were assessed. Results demonstrated that DL-MHA transport from 0.2-20 mM was Na+-dependent and obeyed Michaelis-Menten kinetics with low affinity in PC & MG in apical/basal pH of 7.7/7.7. Changes in apical/basal pH (6.0/6.0, 6.0/7.7, and 7.7/8.7) had insignificant effects on kinetics. In contrast, HG flux kinetics were only obtained in pH 7.7/8.7 or in the presence of lactate with medium affinity. Additionally, DL-MHA transport from 0-150 µM demonstrated the presence of a Na+-dependent high-affinity transporter in PC & MG. Conclusively, two distinct carrier-mediated DL-MHA transport mechanisms along the trout gut were found: 1) in PC & MG: apical transport was regulated by Na+-requiring systems that possibly contained low- and high-affinity transporters, and basolateral transport was primarily achieved through a H+-independent transporter; 2) in HG: uptake was apically mediated by a Na+-dependent transporter with medium affinity, and basolateral exit was largely controlled by an H+-dependent transporter. Finally, two major methionine feed supplements, DL-MHA and DL-methionine (DL-Met) were compared to understand the differences in their bioefficacy. Flux rates of DL-MHA were only about 42.2-66.0% in PC and MG compared to DL-Met, suggesting intestinal transport of DL-MHA was lower than DL-Met.


Assuntos
Perfilação da Expressão Gênica , Mucosa Intestinal/metabolismo , Intestinos/efeitos dos fármacos , Intestinos/fisiologia , Metionina/análogos & derivados , Metionina/farmacologia , Oncorhynchus mykiss/fisiologia , Ração Animal/análise , Animais , Transporte Biológico , Suplementos Nutricionais , Concentração de Íons de Hidrogênio , Cinética , Metionina/química , Transportadores de Ácidos Monocarboxílicos , Prótons , Sódio/química , Sódio/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA