Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Medicinas Complementares
Métodos Terapêuticos e Terapias MTCI
Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Cell Rep ; 35(5): 109081, 2021 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-33951427

RESUMO

Conscious access to sensory information is likely gated at an intermediate site between primary sensory and transmodal association cortices, but the structure responsible remains unknown. We perform functional neuroimaging to determine the neural correlates of conscious access using a volitional mental imagery task, a report paradigm not confounded by motor behavior. Titrating propofol to loss of behavioral responsiveness in healthy volunteers creates dysfunction of the anterior insular cortex (AIC) in association with an impairment of dynamic transitions of default-mode and dorsal attention networks. Candidate subcortical regions mediating sensory gating or arousal (thalamus, basal forebrain) fail to show this association. The gating role of the AIC is consistent with findings in awake participants, whose conscious access is predicted by pre-stimulus AIC activity near perceptual threshold. These data support the hypothesis that AIC, situated at an intermediate position of the cortical hierarchy, regulates brain network transitions that gate conscious access.


Assuntos
Encéfalo/fisiologia , Estado de Consciência/fisiologia , Córtex Insular/patologia , Voluntários Saudáveis , Humanos
2.
Front Hum Neurosci ; 15: 610466, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33815077

RESUMO

Psychedelics have been recognized as model interventions for studying altered states of consciousness. However, few empirical studies of the shamanic state of consciousness, which is anecdotally similar to the psychedelic state, exist. We investigated the neural correlates of shamanic trance using high-density electroencephalography (EEG) in 24 shamanic practitioners and 24 healthy controls during rest, shamanic drumming, and classical music listening, followed by an assessment of altered states of consciousness. EEG data were used to assess changes in absolute power, connectivity, signal diversity, and criticality, which were correlated with assessment measures. We also compared assessment scores to those of individuals in a previous study under the influence of psychedelics. Shamanic practitioners were significantly different from controls in several domains of altered states of consciousness, with scores comparable to or exceeding that of healthy volunteers under the influence of psychedelics. Practitioners also displayed increased gamma power during drumming that positively correlated with elementary visual alterations. Furthermore, shamanic practitioners had decreased low alpha and increased low beta connectivity during drumming and classical music and decreased neural signal diversity in the gamma band during drumming that inversely correlated with insightfulness. Finally, criticality in practitioners was increased during drumming in the low and high beta and gamma bands, with increases in the low beta band correlating with complex imagery and elementary visual alterations. These findings suggest that psychedelic drug-induced and non-pharmacologic alterations in consciousness have overlapping phenomenal traits but are distinct states of consciousness, as reflected by the unique brain-related changes during shamanic trance compared to previous literature investigating the psychedelic state.

3.
J Neurosci ; 41(15): 3462-3478, 2021 04 14.
Artigo em Inglês | MEDLINE | ID: mdl-33664133

RESUMO

Clinical and experimental data from the last nine decades indicate that the preoptic area of the hypothalamus is a critical node in a brain network that controls sleep onset and homeostasis. By contrast, we recently reported that a group of glutamatergic neurons in the lateral and medial preoptic area increases wakefulness, challenging the long-standing notion in sleep neurobiology that the preoptic area is exclusively somnogenic. However, the precise role of these subcortical neurons in the control of behavioral state transitions and cortical dynamics remains unknown. Therefore, in this study, we used conditional expression of excitatory hM3Dq receptors in these preoptic glutamatergic (Vglut2+) neurons and show that their activation initiates wakefulness, decreases non-rapid eye movement (NREM) sleep, and causes a persistent suppression of rapid eye movement (REM) sleep. We also demonstrate, for the first time, that activation of these preoptic glutamatergic neurons causes a high degree of NREM sleep fragmentation, promotes state instability with frequent arousals from sleep, decreases body temperature, and shifts cortical dynamics (including oscillations, connectivity, and complexity) to a more wake-like state. We conclude that a subset of preoptic glutamatergic neurons can initiate, but not maintain, arousals from sleep, and their inactivation may be required for NREM stability and REM sleep generation. Further, these data provide novel empirical evidence supporting the hypothesis that the preoptic area causally contributes to the regulation of both sleep and wakefulness.SIGNIFICANCE STATEMENT Historically, the preoptic area of the hypothalamus has been considered a key site for sleep generation. However, emerging modeling and empirical data suggest that this region might play a dual role in sleep-wake control. We demonstrate that chemogenetic stimulation of preoptic glutamatergic neurons produces brief arousals that fragment sleep, persistently suppresses REM sleep, causes hypothermia, and shifts EEG patterns toward a "lighter" NREM sleep state. We propose that preoptic glutamatergic neurons can initiate, but not maintain, arousal from sleep and gate REM sleep generation, possibly to block REM-like intrusions during NREM-to-wake transitions. In contrast to the long-standing notion in sleep neurobiology that the preoptic area is exclusively somnogenic, we provide further evidence that preoptic neurons also generate wakefulness.


Assuntos
Ácido Glutâmico/metabolismo , Hipotálamo/fisiologia , Neurônios/fisiologia , Sono REM , Vigília , Animais , Ondas Encefálicas , Hipotálamo/citologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neurônios/metabolismo , Proteína Vesicular 2 de Transporte de Glutamato/genética , Proteína Vesicular 2 de Transporte de Glutamato/metabolismo
4.
Arthritis Rheumatol ; 73(7): 1318-1328, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33314799

RESUMO

OBJECTIVE: Acupuncture is a complex multicomponent treatment that has shown promise in the treatment of fibromyalgia (FM). However, clinical trials have shown mixed results, possibly due to heterogeneous methodology and lack of understanding of the underlying mechanism of action. The present study was undertaken to understand the specific contribution of somatosensory afference to improvements in clinical pain, and the specific brain circuits involved. METHODS: Seventy-six patients with FM were randomized to receive either electroacupuncture (EA), with somatosensory afference, or mock laser acupuncture (ML), with no somatosensory afference, twice a week over 8 treatments. Patients with FM in each treatment group were assessed for pain severity levels, measured using Brief Pain Inventory (BPI) scores, and for levels of functional brain network connectivity, assessed using resting state functional magnetic resonance imaging (MRI) and proton magnetic resonance spectroscopy in the right anterior insula, before and after treatment. RESULTS: Fibromyalgia patients who received EA therapy experienced a greater reduction in pain severity, as measured by the BPI, compared to patients who received ML therapy (mean difference in BPI from pre- to posttreatment was -1.14 in the EA group versus -0.46 in the ML group; P for group × time interaction = 0.036). Participants receiving EA treatment, as compared to ML treatment, also exhibited resting functional connectivity between the primary somatosensory cortical representation of the leg (S1leg ; i.e. primary somatosensory subregion activated by EA) and the anterior insula. Increased S1leg -anterior insula connectivity was associated with both reduced levels of pain severity as measured by the BPI (r = -0.44, P = 0.01) and increased levels of γ-aminobutyric acid (GABA+) in the anterior insula (r = 0.48, P = 0.046) following EA therapy. Moreover, increased levels of GABA+ in the anterior insula were associated with reduced levels of pain severity as measured by the BPI (r = -0.59, P = 0.01). Finally, post-EA treatment changes in levels of GABA+ in the anterior insula mediated the relationship between changes in S1leg -anterior insula connectivity and pain severity on the BPI (bootstrap confidence interval -0.533, -0.037). CONCLUSION: The somatosensory component of acupuncture modulates primary somatosensory functional connectivity associated with insular neurochemistry to reduce pain severity in FM.


Assuntos
Córtex Cerebral/metabolismo , Eletroacupuntura/métodos , Fibromialgia/terapia , Córtex Somatossensorial/diagnóstico por imagem , Ácido gama-Aminobutírico/metabolismo , Adulto , Vias Aferentes , Córtex Cerebral/diagnóstico por imagem , Feminino , Fibromialgia/diagnóstico por imagem , Fibromialgia/metabolismo , Neuroimagem Funcional , Humanos , Imageamento por Ressonância Magnética , Pessoa de Meia-Idade , Vias Neurais , Medição da Dor , Espectroscopia de Prótons por Ressonância Magnética
6.
Sci Rep ; 8(1): 13195, 2018 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-30181567

RESUMO

Detecting covert consciousness in behaviorally unresponsive patients by brain imaging is of great interest, but a reproducible model and evidence from independent sources is still lacking. Here we demonstrate the possibility of using general anesthetics in a within-subjects study design to test methods or statistical paradigms of assessing covert consciousness. Using noninvasive neuroimaging in healthy volunteers, we identified a healthy study participant who was able to exhibit the specific fMRI signatures of volitional mental imagery while behaviorally unresponsive due to sedation with propofol. Our findings reveal a novel model that may accelerate the development of new approaches to reproducibly detect covert consciousness, which is difficult to achieve in patients with heterogeneous and sometimes clinically unstable neuropathology.


Assuntos
Encéfalo/efeitos dos fármacos , Encéfalo/fisiologia , Estado de Consciência/efeitos dos fármacos , Hipnóticos e Sedativos/farmacologia , Propofol/farmacologia , Adulto , Anestésicos Intravenosos/farmacologia , Encéfalo/diagnóstico por imagem , Mapeamento Encefálico , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Neuroimagem , Adulto Jovem
7.
Front Neural Circuits ; 11: 44, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28676745

RESUMO

There has been controversy regarding the precise mechanisms of anesthetic-induced unconsciousness, with two salient approaches that have emerged within systems neuroscience. One prominent approach is the "bottom up" paradigm, which argues that anesthetics suppress consciousness by modulating sleep-wake nuclei and neural circuits in the brainstem and diencephalon that have evolved to control arousal states. Another approach is the "top-down" paradigm, which argues that anesthetics suppress consciousness by modulating the cortical and thalamocortical circuits involved in the integration of neural information. In this article, we synthesize these approaches by mapping bottom-up and top-down mechanisms of general anesthetics to two distinct but inter-related dimensions of consciousness: level and content. We show how this explains certain empirical observations regarding the diversity of anesthetic drug effects. We conclude with a more nuanced discussion of how levels and contents of consciousness interact to generate subjective experience and what this implies for the mechanisms of anesthetic-induced unconsciousness.


Assuntos
Anestésicos/farmacologia , Mapeamento Encefálico , Estado de Consciência/efeitos dos fármacos , Estado de Consciência/fisiologia , Vias Neurais/efeitos dos fármacos , Vias Neurais/fisiologia , Animais , Tronco Encefálico/efeitos dos fármacos , Tronco Encefálico/fisiologia , Córtex Cerebral/efeitos dos fármacos , Córtex Cerebral/fisiologia , Diencéfalo/citologia , Diencéfalo/fisiologia , Humanos , Tálamo/efeitos dos fármacos , Tálamo/fisiologia
8.
Anesthesiol Clin ; 30(2): 385-98, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22901616

RESUMO

In the past decades there has been an increasing focus on the relationship of sleep and anesthesia. This relationship bears on the fundamental scientific questions in anesthesiology, such as the mechanism of anesthetic-induced unconsciousness. However, given the increasing prevalence of sleep disorders in surgical patients, the interfaces of sleep and anesthesia are now a pressing clinical concern. This article discusses sleep and anesthesia from the perspective of phenotype, mechanism and function, with some concluding thoughts on the relevance to neuroanesthesiology.


Assuntos
Anestesia , Sono/fisiologia , Anestésicos/farmacologia , Encéfalo/efeitos dos fármacos , Tronco Encefálico/efeitos dos fármacos , Tronco Encefálico/fisiologia , Córtex Cerebral/efeitos dos fármacos , Córtex Cerebral/fisiologia , Humanos , Vias Neurais/efeitos dos fármacos , Vias Neurais/fisiologia , Procedimentos Neurocirúrgicos , Fases do Sono/efeitos dos fármacos , Tálamo/efeitos dos fármacos , Tálamo/fisiologia
9.
Brain Res Brain Res Rev ; 48(3): 409-19, 2005 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-15914249

RESUMO

Psychosurgery, the neurosurgical treatment of psychiatric disease, has a history dating back to antiquity, and involves all of the clinical neurosciences. This review discusses the history of psychosurgery, its development in the 19th century, and the conditions of its use and abuse in the 20th century, with a particular focus on the frontal lobotomy. The transition to the modern era of psychosurgery is discussed, as well as the neurobiology underlying current psychosurgical procedures. The techniques of stereotactic cingulotomy, capsulotomy, subcaudate tractotomy, and limbic leukotomy are described, as well their indications and side effects. Due to the past abuse of psychosurgery, procedures are currently under strict control, and the example of the Cingulotomy Committee at the Massachusetts General Hospital is discussed. Finally, future directions of psychosurgery and somatic therapies are explored, including transcranial magnetic stimulation, vagal nerve stimulation, deep brain stimulation, gene therapy, and stem cell therapy. In summary, this review provides a concise yet comprehensive introduction to the history, current practice, and future trends of neurosurgery for psychiatric disorders.


Assuntos
Encéfalo/cirurgia , Transtornos Mentais/cirurgia , Psicocirurgia/história , Encéfalo/fisiopatologia , Terapia por Estimulação Elétrica/tendências , Comitês de Ética Clínica/tendências , Terapia Genética/tendências , História do Século XIX , História do Século XX , Humanos , Transtornos Mentais/fisiopatologia , Vias Neurais/fisiopatologia , Vias Neurais/cirurgia , Psicocirurgia/ética , Psicocirurgia/tendências
10.
Oncogene ; 24(14): 2367-74, 2005 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-15735744

RESUMO

Neurofibromatosis type 1 (NF1) is a common genetic disorder of the nervous system resulting in neurofibromas and malignant peripheral nerve sheath tumors (MPNST). In this study, we report the modulation of murine and human MPNST cell growth by the fatty acids docosahexaenoic acid (DHA) and arachidonic acid (AA). DHA demonstrated a tendency to stimulate cell growth at low doses and induce apoptosis at high doses, paralleled by the activation of ERK and caspase-3. Furthermore, high-dose DHA reversed the stimulation of MPNST cell growth by a number of growth factors suggested to have a pathogenic effect in NF1 and inhibited MPNST growth in vivo. AA was found to have a reciprocal activity in vitro, stimulating MPNST cell growth at comparable concentrations and reducing DHA activation of ERK. These findings introduce fatty acids as a possible regulator of MPNST development in NF1 patients.


Assuntos
Ácidos Graxos Ômega-3/farmacologia , Ácidos Graxos Ômega-6/farmacologia , Neoplasias de Bainha Neural/patologia , Animais , Sequência de Bases , Linhagem Celular , Primers do DNA , Imuno-Histoquímica , Camundongos , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Neoplasias de Bainha Neural/enzimologia , Fosforilação , Reação em Cadeia da Polimerase Via Transcriptase Reversa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA