Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
ACS Omega ; 9(13): 15449-15462, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38585053

RESUMO

Medicinal plant-based cerium oxide nanoparticles (CeO2NPs) possessed excellent antimicrobial properties against multiple strains of Gram-positive and Gram-negative bacteria. The CeO2NPs are popular because their electropositive charged surface causes oxidation of plasma membrane and facilitates the penetration of CeO2NPs inside the pathogen body. In the present research work, CeO2NPs stabilized with Mentha leaf extract; as a result, nanoparticles surface-bonded with various functional groups of phytochemicals which enhanced the therapeutic potential of CeO2NPs. The inhibition percentage of CeO2NPs was evaluated against eight pathogenic Gram-positive bacteria Staphylococcus aureus and Streptococcus epidermidis; Gram-negative bacteria Escherichia coli, Stenotrophomonas maltophilia, Comamonas sp., Halobacterium sp., and Klebsiella pneumoniae; and plant bacteria Xanthomonas sp. The antifungal properties of CeO2NPs were evaluated against three pathogenic fungal species Bipolaris sorokiniana, Aspergillus flavus, and Fusarium oxysporum via the streak plate method. The antimicrobial inhibitory activity of CeO2NPs was good to excellent. The current research work clearly shows that three different medicinal plants Mentha royleana, Mentha longifolia, and Mentha arvensis based CeO2NPs, variation in nanoparticle sizes, and surface-to-volume ratio of green CeO2NPs are three factors responsible to generate and provoke antimicrobial activities of CeO2NPs against human pathogenic bacteria and plant infecting fungi. The results show that CeO2NPs possessed good antimicrobial properties and are effective to use for pharmaceutical applications and as a food preservative because of low toxicity, organic coating, and acceptable antimicrobial properties. This study showed a rapid and well-organized method to prepare stable phytochemical-coated CeO2NPs with three different plants M. royleana, M. longifolia, and M. arvensis with remarkable antibacterial and antifungal characteristics.

2.
PLoS One ; 19(4): e0297764, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38598493

RESUMO

The commercial-scale production of Caralluma tuberculata faces significant challenges due to lower seed viability and sluggish rate of root growth in natural conditions. To overcome these obstacles, using phyto-mediated selenium nanomaterials as an in vitro rooting agent in plant in vitro cultures is a promising approach to facilitate rapid propagation and enhance the production of valuable therapeutic compounds. This study aimed to investigate the impact of phytosynthesized selenium nanoparticles (SeNPs) on the morphological growth attributes, physiological status, and secondary metabolite fabrication in in vitro propagated Caralluma tuberculata. The results demonstrated that a lower dose of SeNPs (100 µg/L) along with plant growth regulators (IBA 1 mg/L) had an affirmative effect on growth parameters and promoted earliest root initiation (4.6±0.98 days), highest rooting frequency (68.21±5.12%), number of roots (6.3±1.8), maximum fresh weight (710±6.01 mg) and dry weight (549.89±6.77 mg). However, higher levels of SeNPs (200 and 400 µg/L) in the growth media proved detrimental to growth and development. Further, stress caused by SeNPs at 100 µg/L along with PGRs (IBA 1 mg/L) produced a higher level of total chlorophyll contents (32.66± 4.36 µg/ml), while cultures exposed to 200 µg/L SeNPs alone exhibited the maximum amount of proline contents (10.5± 1.32 µg/ml). Interestingly, exposure to 400 µg/L SeNPs induced a stress response in the cultures, leading to increased levels of total phenolic content (3.4 ± 0.052), total flavonoid content (1.8 ± 0.034), and antioxidant activity 82 ± 4.8%). Furthermore, the combination of 100 µg/L SeNPs and plant growth regulators (1 mg/L IBA) led to accelerated enzymatic antioxidant activities, including superoxide dismutase (SOD = 4.4 ± 0.067 U/mg), peroxidase dismutase (POD = 3.3 ± 0.043 U/mg), catalase (CAT = 2.8 ± 0.048 U/mg), and ascorbate peroxidase (APx = 1.6 ± 0.082 U/mg). This is the first report that highlights the efficacy of SeNPs in culture media and presents a promising approach for the commercial propagation of C. tuberculata with a strong antioxidant defense system in vitro.


Assuntos
Apocynaceae , Nanopartículas , Selênio , Antioxidantes/metabolismo , Selênio/farmacologia , Reguladores de Crescimento de Plantas/metabolismo , Raízes de Plantas/metabolismo
3.
Can J Infect Dis Med Microbiol ; 2023: 1860084, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37927532

RESUMO

Malaria, a highly perilous infectious disease, impacted approximately 230 million individuals globally in 2019. Mosquitoes, vectors of over 10% of worldwide diseases, pose a significant public health menace. The pressing need for novel antimalarial drugs arises due to the imminent threat faced by nearly 40% of the global population and the escalating resistance of parasites to current treatments. This study comprehensively addresses prevalent parasitic and viral illnesses transmitted by mosquitoes, leading to the annual symptomatic infections of 400 million individuals, placing 100 million at constant risk of contracting these diseases. Extensive investigations underscore the pivotal role of traditional plants as rich sources for pioneering pharmaceuticals. The latter half of this century witnessed the ascent of bioactive compounds within traditional medicine, laying the foundation for modern therapeutic breakthroughs. Herbal medicine, notably influential in underdeveloped or developing nations, remains an essential healthcare resource. Traditional Indian medical systems such as Ayurveda, Siddha, and Unani, with a history of successful outcomes, highlight the potential of these methodologies. Current scrutiny of Indian medicinal herbs reveals their promise as cutting-edge drug reservoirs. The propensity of plant-derived compounds to interact with biological receptors positions them as prime candidates for drug development. Yet, a comprehensive perspective is crucial. While this study underscores the promise of plant-based compounds as therapeutic agents against malaria and dengue fever, acknowledging the intricate complexities of drug development and the challenges therein are imperative. The journey from traditional remedies to contemporary medical applications is multifaceted and warrants prudent consideration. This research aspires to offer invaluable insights into the management of malaria and dengue fever. By unveiling plant-based compounds with potential antimalarial and antiviral properties, this study aims to contribute to disease control. In pursuit of this goal, a thorough understanding of the mechanistic foundations of traditional antimalarial and antidengue plants opens doors to novel therapeutic avenues.

4.
Front Plant Sci ; 14: 1253193, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37810387

RESUMO

Introduction: Caralluma tuberculata holds significant importance as a medicinal plant due to its abundance of bioactive metabolites, which offer a wide range of therapeutic potentials. However, the sustainable production of this plant is challenged by overexploitation, changes in natural conditions, slow growth rate, and inadequate biosynthesis of bioactive compounds in wild populations. Therefore, the current study was conducted to establish an in vitro based elicitation strategy (nano elicitors and light regimes) for the enhancement of biomass and production of secondary metabolites. Methods: Garlic clove extract was employed as a stabilizing, reducing, or capping agent in the green formulation of Selenium nanoparticles (SeNPs) and various physicochemical characterization analyses such as UV visible spectroscopy, scanning electron microscopy (SEM), energy dispersive X-Ray (EDX) Spectroscopy, fourier transform infrared (FTIR) spectroscopy and X-ray diffraction (XRD) were performed. Furthermore, the effects of phytosynthesized SeNPs at various concentrations (0, 50, 100, 200, and 400 µg/L on callus proliferation and biosynthesis of medicinal metabolites under different light regimes were investigated. Results and discussion: Cultures grown on Murashige and Skoog (MS) media containing SeNPs (100 µg/L), in a dark environment for two weeks, and then transferred into normal light, accumulated maximum fresh weight (4,750 mg/L FW), phenolic contents (TPC: 3.91 mg/g DW), flavonoid content (TFC: 2.04 mg/g DW) and 2,2-Diphenyl-1-picrylhydrazyl (DPPH) antioxidant activity (85%). Maximum superoxide dismutase (SOD: 4.36 U/mg) and peroxide dismutase activity (POD: 3.85 U/mg) were determined in those cultures exposed to SeNPs (100 µg/L) under complete dark conditions. While the callus cultures proliferate on media augmented with SeNPs (200 µg/L) and kept under dark conditions for two weeks and then shifted to normal light conditions exhibited the highest catalase (CAT: 3.25 U/mg) and ascorbate peroxidase (APx: 1.93 U/mg) activities. Furthermore, LC-ESI-MS/MS analysis confirmed the effects of SeNPs and light conditions that elicited the antidiabetic metabolites (cumarins, gallic acid, caffeic acid, ferulic acid, catechin, querctin and rutin). This protocol can be scaled up for the industrial production of plant biomass and pharmacologically potent metabolites using in vitro callus cultures of C. tuberculata.

5.
Sci Rep ; 13(1): 4514, 2023 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-36934168

RESUMO

Plants provide humans with more than just food and shelter; they are also a major source of medications. The purpose of this research was to investigate the antioxidant and hypoglycemic potential of green synthesized CeONPs using Mentha royleana leaves extract. The morphological and physicochemical features of CeONPs were evaluated by UV-Visible spectrophotometry, Scanning Electron Microscopy, Energy Dispersive X-rays and Fourier-transform infrared spectrometry, Dynamic light scattering, Atomic Force Microscopy, Zeta Potential. The average size range of synthesized CeONPs diameter between 46 and 56 nm, crystalline in shape, with Polydispersity index value of 0.2 and subatomic particles mean diameter was 4.5-9.1 nm. The antioxidant capability of CeONPs was assessed using DPPH, ABTS+, hydrogen peroxide, hydroxyl radical scavenging, and reducing power tests. The hypoglycemic potential of CeONPs was investigated using alpha-amylase, alpha-glucosidase, glucose absorption by yeast cells, and antisucrase. The effective concentrations were 500 and 1000 µg/ml found good in suppressing radical species. To explore the hypoglycemic potential of CeONPs, alpha-amylase, alpha-glucosidase, glucose absorption by yeast cell, and antisucrase assays were performed. Glucose absorb by yeast cells assay was tested for three distinct glucose concentrations: 5 mmol/L, 10 mmol/L, and 25 mmol/L. Green synthesize CeONPs showed a dose-dependent response, higher concentrations of CeONPs imposed a stronger inhibitory impact on the catalytic site of enzymes. This study suggest that CeONPs could possibly binds to the charge carrying species and act as competitive inhibitor which slow down the enzyme substrate reaction and prevents enzymatic degradation. The study's findings were outstanding, which bodes well for future medicinal applications of CeONPs.


Assuntos
Cério , Nanopartículas Metálicas , alfa-Glucosidases , Antioxidantes/farmacologia , Cério/química , Glucose , Hipoglicemiantes/farmacologia , Hipoglicemiantes/química , Nanopartículas Metálicas/química , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Saccharomyces cerevisiae
6.
Molecules ; 28(3)2023 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-36770731

RESUMO

Bio-fortification is a new, viable, cost-effective, and long-term method of administering crucial minerals to a populace with limited exposure to diversified foods and other nutritional regimens. Nanotechnology entities aid in the improvement of traditional nutraceutical absorption, digestibility, and bio-availability. Nano-applications are employed in poultry systems utilizing readily accessible instruments and processes that have no negative impact on animal health and welfare. Nanotechnology is a sophisticated innovation in the realm of biomedical engineering that is used to diagnose and cure various poultry ailments. In the 21st century, zinc nanoparticles had received a lot of considerable interest due to their unusual features. ZnO NPs exhibit antibacterial properties; however, the qualities of nanoparticles (NPs) vary with their size and structure, rendering them adaptable to diverse uses. ZnO NPs have shown remarkable promise in bio-imaging and drug delivery due to their high bio-compatibility. The green synthesized nanoparticles have robust biological activities and are used in a variety of biological applications across industries. The current review also discusses the formulation and recent advancements of zinc oxide nanoparticles from plant sources (such as leaves, stems, bark, roots, rhizomes, fruits, flowers, and seeds) and their anti-cancerous activities, activities in wound healing, and drug delivery, followed by a detailed discussion of their mechanisms of action.


Assuntos
Nanopartículas Metálicas , Óxido de Zinco , Animais , Zinco , Óxido de Zinco/química , Nanopartículas Metálicas/química , Aves Domésticas , Extratos Vegetais/química , Antibacterianos/química
7.
Molecules ; 27(23)2022 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-36500240

RESUMO

In this study, selenium nanoparticles (SeNPs) and cerium oxide nanoparticles (CeONPs) were synthesized by using the extract of Melia azedarach leaves, and Acorus calamusas rhizomes, respectively, and investigated for the biological and sustainable control of yellow, or stripe rust, disease in wheat. The green synthesized NPs were characterized by UV-Visible spectroscopy, scanning electron microscopy (SEM), energy-dispersive X-ray (EDX), and X-ray diffraction (XRD). The SeNPs and CeONPs, with different concentrations (i.e., 10, 20, 30, and 40 mg/L), were exogenously applied to wheat infected with Puccinia striformis. SeNPs and CeONPs, at a concentration of 30 mg/L, were found to be the most suitable concentrations, which reduced the disease severity and enhanced the morphological (plant height, root length, shoot length, leaf length, and ear length), physiological (chlorophyll and membrane stability index), biochemical (proline, phenolics and flavonoids) and antioxidant (SOD and POD) parameters. The antioxidant activity of SeNPs and CeONPs was also measured. For this purpose, different concentrations (50, 100, 150, 200 and 400 ppm) of both SeNPs and CeONPs were used. The concentration of 400 ppm most promoted the DPPH, ABTS and reducing power activity of both SeNPs and CeONPs. This study is considered the first biocompatible approach to evaluate the potential of green synthesized SeNPs and CeONPs to improve the health of yellow, or stripe rust, infected wheat plants and to provide an effective management strategy to inhibit the growth of Puccinia striformis.


Assuntos
Basidiomycota , Nanopartículas , Selênio , Triticum , Selênio/farmacologia , Selênio/química , Nanopartículas/química , Antioxidantes/farmacologia , Antioxidantes/química
8.
Biomed Res Int ; 2022: 9539908, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36164441

RESUMO

Currently, providing nutritious food to all people is one of the greatest challenges due to rapid human population growth. The global poultry industry is a part of the agrifood sector playing an essential role in food insecurity by providing nutritious meat and egg sources. However, limited meat production with less nutritional value is not fulfilling the higher market demands worldwide. Researchers are focusing on nanobiotechnology by employing phytosynthesized mineral nanomaterials to improve the growth performance and nutritional status of broilers as these mineral nanoparticles are usually absorbed in greater amounts from the gastrointestinal tract and exert enhanced biological effects in the target tissues of animals with greater tissue accumulation. These mineral nanoparticles are efficiently absorbed through the gastrointestinal tract and reach essential organs via blood. As a result, it enhances growth performance and nutritional value with less toxicity and tremendous bioavailability properties. In this review, the research work conducted in the recent past, on the different aspects of nanotechnology including supplementation of mineral nanoparticle in diet and their potential role in the poultry industry, has been concisely discussed.


Assuntos
Nanopartículas , Aves Domésticas , Animais , Galinhas , Humanos , Carne , Minerais
9.
PLoS One ; 17(6): e0269445, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35675300

RESUMO

Majority of the mountain dwelling communities living in the Himalayas rely on traditional herbal medicines for primary healthcare needs. Present study was conducted in fairy meadows and allied valleys in District Diamir, Gilgit Baltistan autonomous territory in northern Pakistan. Documentation of traditional medicinal knowledge (TMK) of local communities for the treatment of gastrointestinal disorders was carried out as a component of a wider medico-botanical expedition conducted in the entire base camp of the great Nanga Parbat peak during 2016-19. Various ethnobotanical parameters i.e. use value (UV), informant consensus factor (ICF), Fidelity level (FL), direct matrix ranking test (DMRT) and preference ranking (PR) were applied to evaluate the data collected during field surveys. The plants were also subjected to a comparative review for novelty assessment. A total of 61 medicinal plant species belonging to 55 genera and 35 families are reported here for the treatment of GIDs. Compositae was the leading family with 8 (13%) species. Fourteen gastrointestinal disorders were cured with 32% taxon were reported for stomachic followed by diarrhea (15%) and constipation (14%). Highest use reports (5) and use citations (207) were reported for Mentha longifolia L. while highest UV (1.79) was obtained for Artemisia maritima L. Hylotelephium telephioides (Ledeb.), A. maritima, M. longifolia, M. piperita L., Allium cepa L., and A. annua L. exhibited 100% FL. Highest ICF was calculated against dysentery and flatulence. DMRT ranked Prunus persica L. first for its multipurpose uses. Taking constipation as a reference gastrointestinal disease, PR for ten plant species was calculated where H. telephioides was ranked first followed by A. maritima. Present study concluded that 19 out of 61 plant species were documented for the first time with novel medicinal uses to cure GIDs. These plant species could act as potential reservoirs of novel lead compounds for the treatments of gastrointestinal disorders.


Assuntos
Artemisia , Disenteria , Plantas Medicinais , Constipação Intestinal , Etnobotânica , Humanos , Paquistão , Fitoterapia , Inquéritos e Questionários
10.
Front Endocrinol (Lausanne) ; 13: 1029942, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36601006

RESUMO

Caralluma tuberculata, a medicinal and edible plant of the genus Caralluma, belongs to the family Asclepiadaceae. Traditionally, its succulent stems are used as folk medicine for life-threatening diabetes mellitus (DM) disease. Its antidiabetic potential is ascribed to the presence of various secondary metabolites (e.g., pregnane glycosides, flavone glycosides, megastigmane glycosides, polyphenols, ferulic acid, quercetin, and bitter principles, among others) that act as effective and safe antidiabetic agents. The mechanisms of these bioactive secondary metabolites in C. tuberculata herbal medicine include lowering the blood glucose level, stimulating B cells of the pancreas to release more insulin, enhancing the sensitivity of the insulin receptor, inhibiting the action of glucagon and the hydrolysis of glycogen, and increasing the use of glucose in tissues and organ. However, overexploitation, alterations in natural environmental conditions, lower seed viability, and slow growth rate are responsible for the extinction of species from natural habitats, then becoming critically endangered species according to the International Union for Conservation of Nature Red List categories. Therefore, its limited availability does not meet the higher worldwide market demand of C. tuberculata as an antidiabetic drug. Thus, for its conservation and sustainable utilization, researchers across the globe are working on devising strategies to conserve and improve biomass along with the secondary metabolite profiles of C. tuberculata using in vitro approaches. The current review describes the recent progress on antidiabetic phytoconstituents, their cellular mechanisms, and their subsequent clinical outcomes in the drug discovery management of DM. Moreover, in vitro methods such as callus culture, micropropagation, and nano-elicitation strategies for conserving and producing bioactive secondary metabolites have been concisely reviewed and discussed.


Assuntos
Apocynaceae , Hipoglicemiantes , Hipoglicemiantes/farmacologia , Glicosídeos , Extratos Vegetais/farmacologia , Insulina
11.
Artigo em Inglês | MEDLINE | ID: mdl-34733342

RESUMO

Bajwat Wildlife Sanctuary is a complex riverine ecosystem and is unique because of the presence of river Chenab, various seasonal streams, lakes, and Head Marala barrage. These ecogeographic conditions provide diverse natural habitats for various plant and animal species to grow uninterrupted and have undocumented ethnopharmacologically important medicinal flora. The present study involves the first-ever extensive investigation to document the ethnopharmacological knowledge on medicinal plants of local healers and inhabitants of the Bajwat Wildlife Sanctuary to treat ailments. The unstructured and semistructured interviews of the local healers and inhabitants were conducted that included 130 individuals. The ethnomedicinal formulations, their method of preparation, mode of administration, parts of the plant used, diseases cured, and their categorization along with species use report (UR) were analyzed. The ethnopharmacological study led to the enlisting of 114 medicinal plant species belonging to 97 genera and distributed among 47 plant families. 2029 URs were collected with 42 general disease categories. Each plant species was reported 18 times to cure various diseases (∼18 UR), while ∼48 URs were collected on each disease category by local informants. Digestive issues (290 URs, ∼14.29%) and skin infections (279 URs, ∼13.75%) were found most commonly among the occupants of the area. The oral administration (69%) of herbal drugs and the preparation of plant extracts (32%) were the most common ethnopharmacological strategies. Inhabitants of the area were well aware of the limited use of poisonous plants. 8 (∼7%) out of the total 114 medicinal plant species were listed in the IUCN Red List of Threatened Species as Least Concern, while Eucalyptus camaldulensis Dehnh. was enlisted as near-threatened. The results of the present investigation show that the occupants of the Bajwat have sound information about the ethnopharmacological consumption of medicinal plants, and some of the novel ethnomedicinal formulations were reported which provide the basic data for further pharmacological research.

12.
Front Plant Sci ; 12: 610194, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33777062

RESUMO

The current pandemic has caused chaos throughout the world. While there are few vaccines available now, there is the need for better treatment alternatives in line with preventive measures against COVID-19. Along with synthetic chemical compounds, phytochemicals cannot be overlooked as candidates for drugs against severe respiratory coronavirus 2 (SARS-CoV-2). The important role of secondary metabolites or phytochemical compounds against coronaviruses has been confirmed by studies that reported the anti-coronavirus role of glycyrrhizin from the roots of Glycyrrhiza glabra. The study demonstrated that glycyrrhizin is a very promising phytochemical against SARS-CoV, which caused an outbreak in 2002-2003. Similarly, many phytochemical compounds (apigenin, betulonic acid, reserpine, emodin, etc.) were isolated from different plants such as Isatis indigotica, Lindera aggregate, and Artemisia annua and were employed against SARS-CoV. However, owing to the geographical and seasonal variation, the quality of standard medicinal compounds isolated from plants varies. Furthermore, many of the important medicinal plants are either threatened or on the verge of endangerment because of overharvesting for medicinal purposes. Therefore, plant biotechnology provides a better alternative in the form of in vitro culture technology, including plant cell cultures, adventitious roots cultures, and organ and tissue cultures. In vitro cultures can serve as factories of secondary metabolites/phytochemicals that can be produced in bulk and of uniform quality in the fight against COVID-19, once tested. Similarly, environmental and molecular manipulation of these in vitro cultures could provide engineered drug candidates for testing against COVID-19. The in vitro culture-based phytochemicals have an additional benefit of consistency in terms of yield as well as quality. Nonetheless, as the traditional plant-based compounds might prove toxic in some cases, engineered production of promising phytochemicals can bypass this barrier. Our article focuses on reviewing the potential of the different in vitro plant cultures to produce medicinally important secondary metabolites that could ultimately be helpful in the fight against COVID-19.

13.
Appl Microbiol Biotechnol ; 105(6): 2261-2275, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33591386

RESUMO

Green synthesis of silver nanoparticles (SNPs) by harnessing the natural abilities of plant secondary metabolites has advantages over routine physical and chemical synthetic approaches due to their one-step experimental setup to reduce and stabilize the bulk silver into SNPs, biocompatible nature, and therapeutic significance. The unique size, shape, and biochemical functional corona of SNPs embellish them with the potential to perform therapeutic actions by adopting various mechanistic approaches including but not limited to the disruption of the electron transport chain, mitochondrial damage, DNA fragmentation, inhibition of ATP synthase activity, disorganization of the cell membrane, suspension of cellular signaling pathways, induction of apoptosis, and inhibition of enzymes activity. This review elaborates the biogenic synthesis of SNPs in redox chemical reactions by using plant secondary metabolites found in plant extracts. In addition, it explains the synergistic influence of physicochemical reaction parameters such as the temperature, pH, the concentration of the AgNO3, and the ratio of reactants to affect the reaction kinetics, molecular mechanics, enzymatic catalysis, and protein conformations that aid to affect the size, shape, and potential biochemical corona of nanoparticles. This review also provides up-to-date information on the mechanistic actions that embellish the plant-based SNPs, an anticancer, cytotoxic, antidiabetic, antimicrobial, and antioxidant potential. The mechanistic understanding of the therapeutic actions of SNPs will help in precision medicine to develop customized treatment and healthcare approaches for the welfare of the human population. KEY POINTS: • Significance of the biogenic nanoparticles • Biomedical application potential of the plant-based silver nanoparticles • Mechanism of the anticancer, antidiabetic, and antimicrobial actions of the plant-based silver nanoparticles.


Assuntos
Diabetes Mellitus , Nanopartículas Metálicas , Neoplasias , Antibacterianos , Química Verde , Humanos , Infecções , Neoplasias/tratamento farmacológico , Extratos Vegetais , Prata
14.
Biocatal Agric Biotechnol ; 31: 101890, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33520034

RESUMO

There are numerous trials underway to find treatment for the COVID-19 through testing vaccines as well as existing drugs. Apart from the many synthetic chemical compounds, plant-based compounds could provide an array of \suitable candidates for testing against the virus. Studies have confirmed the role of many plants against respiratory viruses when employed either as crude extracts or their active ingredients in pure form. The purpose of this review article is to highlight the importance of phytomedicine against COVID-19. The main aim is to review the mechanistic aspects of most important phytochemical compounds that have showed potential against coronaviruses. Glycyrrhizin from the roots of Glycyrrhiza glabra has shown promising potential against the previously epidemic coronavirus, SARS-CoV. Other important plants such as Artemisia annua, Isatis indigotica, Lindera aggregate, Pelargonium sidoides, and Glychirrhiza spp. have been employed against SARS-CoV. Active ingredients (e.g. emodin, reserpine, aescin, myricetin, scutellarin, apigenin, luteolin, and betulonic acid) have shown promising results against the coronaviruses. Phytochemicals have demonstrated activity against the coronaviruses through mechanisms such as viral entry inhibition, inhibition of replication enzymes and virus release blockage. However, compared to synthetic drugs, phytomedicine are mechanistically less understood and should be properly evaluated before application. Nonetheless, phytochemicals reduce the tedious job of drug discovery and provide a less time-consuming alternative for drug testing. Therefore, along with other drugs currently tested against COVID-19, plant-based drugs should be included for speedy development of COVID-19 treatment.

15.
Int J Nanomedicine ; 16: 249-268, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33469285

RESUMO

Selenium nanoparticles (SeNPs) have advantages over other nanomaterials because of the promising role of selenium in the stabilization of the immune system and activation of the defense response. The use of SeNPs and their supplements not only have pharmacological significance but also boost and prepare the body's immune system to fight the pathogens. This review summarizes the recent progress in the biogenesis of plant-based SeNPs by using various plant species and the role of secondary metabolites on their biocompatible functioning. Phyto-synthesis of SeNPs results in the synthesis of nanomaterials of various, size, shape and biochemical nature and has advantages over other routine physical and chemical methods because of their biocompatibility, eco-friendly nature and in vivo actions. Unfortunately, the plant-based SeNPs failed to attain considerable attention in the pharmaceutical industry. However, a few studies were performed to explore the therapeutic potential of the SeNPs against various cancer cells, microbial pathogens, viral infections, hepatoprotective actions, diabetic management, and antioxidant approaches. Further, some of the selenium-based drug delivery systems are developed by engineering the SeNPs with the functional ligands to deliver drugs to the targeted sites. This review also provides up-to-date information on the mechanistic actions that the SeNPs adopt to achieve their designated tasks as it may help to develop precision medicine with customized treatment and healthcare for the ailing population.


Assuntos
Nanopartículas/uso terapêutico , Plantas/química , Selênio/farmacologia , Animais , Antioxidantes/farmacologia , Sistemas de Liberação de Medicamentos , Humanos , Hipoglicemiantes/farmacologia , Nanopartículas/ultraestrutura
16.
Artif Cells Nanomed Biotechnol ; 48(1): 1340-1353, 2020 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-33241944

RESUMO

Physicochemical parameters include pH, temperature, the concentration of the AgNO3, ratio of reactants, agitation and incubation period that act synergistically and provide a steering force to modulate the biogenesis of nanoparticles by influencing the molecular dynamics, reaction kinetics, protein conformations, and catalysis. The current study involved the bio-fabrication of silver nanoparticles (SNPs) by using the reducing abilities of Mentha longifolia (L.) L. leaves aqueous extract. Spectrophotometric analysis of various biochemical reactions showed that 3 mM of AgNO3 at 120 °C in an acidic pH when mixed in 1-9 ratio of plant extract and AgNO3 respectively, are the optimised conditions for SNPs synthesis. Different analytical techniques confirmed that the nanoparticles are anisotropic and nearly spherical and have a size range of 10-100 nm. The ∼10 µg/ml of SNPs killed ∼66% of Leishmania population and IC50 was measured at 8.73 µg/ml. SRB assay and Annexin V apoptosis assay results showed that the plant aqueous extract and SNPs are not active against HCT116 colon cancer cells and no IC50 (80% survival) was reported. ROS generation was quantified at 0.08 Φ, revealed that the SNPs from M. longifolia can generate free radicals and no photothermal activity was recorded which makes them non-photodynamic.


Assuntos
Fenômenos Químicos , Neoplasias do Colo/patologia , Leishmania/efeitos dos fármacos , Nanopartículas Metálicas , Prata/química , Prata/farmacologia , Células HCT116 , Humanos , Cinética , Leishmania/citologia , Extratos Vegetais/metabolismo , Prata/metabolismo
17.
PLoS One ; 15(11): e0241568, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33170873

RESUMO

The use of nanomaterials in agriculture is a current need and could be helpful in overcoming food security risks. Brassica napus L. is the third most important crop for edible oil, having double low unsaturated fatty acids. In the present study, we investigated the effects of green synthesized Zn NPs on biochemical effects, antioxidant enzymes, nutritional quality parameters and on the fatty acid profile of rapeseed (B. napus). Plant-mediated synthesis of zinc nanoparticles (Zn NPs) was carried out using Mentha arvensis L. leaf extract followed by characterization through ultraviolet-visible spectroscopy (UV-vis), scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy dispersive X-Ray (EDX), and X-Ray diffraction (XRD). NPs exhibited irregular shapes ranging in size from 30-70 nm and EDX analysis confirmed 96.08% of Zn in the sample. The investigated biochemical characterization (protein content, proline content, total soluble sugar (TSS), total flavonoid content (TFC), and total phenolic content (TPC) showed a substantial change on exposure to Zn NPs. A dose-dependent gradual increase was observed in the antioxidant enzymes, superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT). Oil and moisture contents dropped significantly from the control level in the rapeseed (B. napus) varieties. However, different trends in nutritional (Zn, Na+, K+) and fatty acid profiling of B. napus have been noted. This study demonstrates that Zn NPs have the potential to improve the biochemical, nutritional, antioxidant enzymes, and fatty acid profile of B. napus varieties.


Assuntos
Brassica napus/efeitos dos fármacos , Fertilizantes , Química Verde/métodos , Nanopartículas Metálicas/administração & dosagem , Zinco/administração & dosagem , Brassica napus/fisiologia , Catalase/metabolismo , Ácidos Graxos/análise , Ácidos Graxos/metabolismo , Mentha/química , Nanopartículas Metálicas/química , Nutrientes/análise , Nutrientes/metabolismo , Peroxidase/metabolismo , Extratos Vegetais/química , Folhas de Planta/química , Proteínas de Plantas/metabolismo , Superóxido Dismutase/metabolismo , Zinco/química
18.
Microsc Res Tech ; 83(11): 1299-1307, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32885515

RESUMO

The present study involves an ecofriendly strategy for the reduction of bulk silver into its nanoforms by using the aqueous extracts of Mentha longifolia leaves (MLL), M. longifolia branches (MLB), and Mentha arvensis (MA). Synthesis of silver nanoparticles (AgNPs) was confirmed initially by observing a change in the color of the reaction mixture followed by measuring the absorbance, and a characteristic surface plasmon resonance band was observed between 400 and 500 nm of the λ of light. Morphological and optical characterization techniques of AgNPs were performed by using UV-visible spectrophotometer, scanning electron microscopy, atomic force microscopy, energy-dispersive X-ray spectroscopy (EDX), and dynamic light scattering (DLS) analysis. It was confirmed that the phytosynthesized nanoparticles are anisotropic and nearly spherical having a size smaller than 100 nm while some cubical and prismatic nanostructures were also observed. The average size of a single nanoparticle measured by DLS analysis was reported 10.50 nm, 15.55 nm, and 20.46 nm biofabricated by using MLB, MLL, and MA extract, respectively. The EDX analysis reported the presence of elemental Ag while elemental O was also observed in MLL and MLB AgNPs. The results from these experiments endorse the potential of reported plant species to phytosynthesize AgNPs. The future applications of this work involve the utilization of AgNPs for multiple biological applications.


Assuntos
Mentha , Nanopartículas Metálicas , Extratos Vegetais , Folhas de Planta , Prata
19.
Int J Nanomedicine ; 15: 3621-3637, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32547018

RESUMO

BACKGROUND: Physicochemical parameters such as temperature, pH, the concentration of the AgNO3 and ratio of reactants act synergistically to influence the reaction kinetics, molecular mechanics, enzymatic catalysis and protein conformations that aid to affect the size, shape and biochemical corona of nanoparticles. The present study was performed to investigate the influence of reaction parameters on the bio-fabrication of silver nanoparticles (AgNPs) by using Mentha arvensis and to determine their potential to control the proliferation of colon cancer cells'. METHODS: Plant-mediated method was used for the bio-fabrication and stabilization of AgNPs. Reaction parameters were arranged, and surface plasmon resonance (SPR) bands of AgNPs were collected by using a UV-Visible spectrophotometer. NPs were characterized structurally and optically by using SEM, AFM, EDX and DLS techniques. AgNPs and plant aqueous extract were tested against HCT116 colon cancer cells by using SRB assay, Annexin V assay and cell cycle analysis. RESULTS: Spectrophotometric comparison of various reaction conditions manifested that 5 mM of AgNO3, 60 °C in an acidic pH and a mixing ratio of 1:9 of plant extract and AgNO3, respectively, are the optimized conditions for AgNP synthesis. Structural evaluation by SEM, AFM and particle size analysis confirmed that the NPs are <100 nm and are anisotropic, spherical, triangular and moderately dispersed in the colloidal mixture. SRB assay expressed biomass-stabilized AgNPs as effective cytotoxic particles against HCT116 colon cancer cells, and the IC50 was measured at 1.7 µg/mL. Annexin V apoptosis assay further confirmed that the AgNPs induce apoptosis in a dose-dependent manner. Experimental evidence manifested that the AgNPs arrest cell cycle and expressed entrapment of a greater number of cells in the Sub-G1 phase, further verifying the anticancer abilities of AgNPs. CONCLUSION: These findings explain the synergistic effects of physicochemical parameters to optimize the phytosynthesis of biocompatible AgNPs to overcome the limitations of conventional chemotherapeutic treatments of colon cancer cells.


Assuntos
Neoplasias do Colo/patologia , Mentha/química , Nanopartículas Metálicas/química , Prata/farmacologia , Antineoplásicos/farmacologia , Catálise , Ciclo Celular/efeitos dos fármacos , Células HCT116 , Humanos , Concentração de Íons de Hidrogênio , Concentração Inibidora 50 , Nanopartículas Metálicas/ultraestrutura , Tamanho da Partícula , Extratos Vegetais/química , Espectrofotometria Ultravioleta , Temperatura
20.
IET Nanobiotechnol ; 13(2): 230-236, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31051456

RESUMO

The present study was designed to check the role of silver nanoparticles (AgNPs) on physiological, biochemical parameters and antioxidants of wheat (Triticum aestivum L.) under heat stress. Plant extract of Moringa oleifera was used for AgNPs synthesis followed by characterization through UV-Vis spectroscopy, SEM, XRD and Zeta analyser. Heat stress was applied in range of 35-40°C for 3 hrs/ day for 3 days to wheat plants at trifoliate stage. Heat stress decreased the RWC (13.2%), MSI (16.3%), chl a (5.2%), chl b (4.1%) and TCCs (9.9%). Wheat plants treated with AgNPs showed significant increase in RWC (12.2%), MSI (26.5%), chl a (10%), chl b (16.4%), TCCs (19%), TPC (2.4%), TFC (2.5%), TASC (2.5%), SOD (1.3%), POX (1.5%), CAT (1.8%), APX (1.2%) and GPX (1.4%), under heat stress. Lower concentration of AgNPs (50 mg/l) decreased the sugar (5.8%) and proline contents (4%), while increase was observed in higher AgNPs concentrations. Overall, AgNPs treatment enhanced thermo-tolerance in wheat plants, but the mechanism of AgNPs action needs further investigation at genome and proteome level in wheat plants under heat stress.


Assuntos
Antioxidantes/farmacologia , Resposta ao Choque Térmico/efeitos dos fármacos , Nanopartículas Metálicas/química , Prata/farmacologia , Triticum/efeitos dos fármacos , Antioxidantes/química , Poluentes Ambientais/química , Poluentes Ambientais/farmacologia , Resposta ao Choque Térmico/fisiologia , Moringa oleifera/química , Extratos Vegetais/química , Extratos Vegetais/metabolismo , Prata/química , Superóxidos/metabolismo , Triticum/química , Triticum/metabolismo , Triticum/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA