Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Métodos Terapêuticos e Terapias MTCI
Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Front Oncol ; 10: 589434, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33364193

RESUMO

Adoptive T cell therapy (ACT) is highly effective in the treatment of hematologic malignancies, but shows limited success in solid tumors. Inactivation of T cells in the tumor milieu is a major hurdle to a wider application of ACT. Cytotoxicity is the most relevant activity for tumor eradication. Here, we document that cytotoxic T cells (CTL) in lactic acidosis exhibited strongly reduced tumor cell killing, which could be compensated partly by increasing the CTL to tumor cell ratio. Lactic acid intervened at multiple steps of the killing process. Lactic acid repressed the number of CTL that performed lytic granule exocytosis (degranulation) in tumor cell co-culture, and, additionally impaired the quality of the response, as judged by the reduced intensity of degranulation and lower secretion of cytotoxins (perforin, granzyme B, granzyme A). CTL in lactic acid switched to a low bioenergetic profile with an inability to metabolize glucose efficiently. They responded to anti-CD3 stimulation poorly with less extracellular acidification rate (ECAR). This might explain their repressed granule exocytosis activity. Using live cell imaging, we show that CTL in lactic acid have reduced motility, resulting in lower field coverage. Many CTL in lactic acidosis did not make contact with tumor cells; however, those which made contact, adhered to the tumor cell much longer than a CTL in normal medium. Reduced motility together with prolonged contact duration hinders serial killing, a defining feature of killing potency, but also locally confines cytotoxic activity, which helps to reduce the risk of collateral organ damage. These activities define lactic acid as a major signaling molecule able to orchestrate the spatial distribution of CTL inside inflamed tissue, such as cancer, as well as moderating their functional response. Lactic acid intervention and strategies to improve T cell metabolic fitness hold promise to improve the clinical efficacy of T cell-based cancer immunotherapy.

2.
BMC Infect Dis ; 20(1): 505, 2020 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-32660552

RESUMO

BACKGROUND: Meningococcal meningitis (MM) is a life-threatening disease associated with approximately 10% case fatality rates and neurological sequelae in 10-20% of the cases. Recently, we have shown that the matrix metalloproteinase (MMP) inhibitor BB-94 reduced brain injury in a mouse model of MM. The present study aimed to assess whether doxycycline (DOX), a tetracycline that showed a neuroprotective effect as adjuvant therapy in experimental pneumococcal meningitis (PM), would also exert a beneficial effect when given as adjunctive therapy to ceftriaxone (CRO) in experimental MM. METHODS: BALB/c mice were infected by the intracisternal route with a group C Neisseria meningitidis strain. Eighteen h post infection (hpi), animals were randomised for treatment with CRO [100 mg/kg subcutaneously (s.c.)], CRO plus DOX (30 mg/kg s.c.) or saline (control s.c.). Antibiotic treatment was repeated 24 and 40 hpi. Mouse survival and clinical signs, bacterial counts in cerebella, brain damage, MMP-9 and cyto/chemokine levels were assessed 48 hpi. RESULTS: Analysis of bacterial load in cerebella indicated that CRO and CRO + DOX were equally effective at controlling meningococcal replication. No differences in survival were observed between mice treated with CRO (94.4%) or CRO + DOX (95.5%), (p > 0.05). Treatment with CRO + DOX significantly diminished both the number of cerebral hemorrhages (p = 0.029) and the amount of MMP-9 in the brain (p = 0.046) compared to untreated controls, but not to CRO-treated animals (p > 0.05). Levels of inflammatory markers in the brain of mice that received CRO or CRO + DOX were not significantly different (p > 0.05). Overall, there were no significant differences in the parameters assessed between the groups treated with CRO alone or CRO + DOX. CONCLUSIONS: Treatment with CRO + DOX showed similar bactericidal activity to CRO in vivo, suggesting no antagonist effect of DOX on CRO. Combined therapy significantly improved mouse survival and disease severity compared to untreated animals, but addition of DOX to CRO did not offer significant benefits over CRO monotherapy. In contrast to experimental PM, DOX has no adjunctive activity in experimental MM.


Assuntos
Antibacterianos/uso terapêutico , Ceftriaxona/uso terapêutico , Doxiciclina/uso terapêutico , Meningite Meningocócica/tratamento farmacológico , Neisseria meningitidis Sorogrupo C , Animais , Antibacterianos/administração & dosagem , Carga Bacteriana/efeitos dos fármacos , Ceftriaxona/administração & dosagem , Hemorragia Cerebral/tratamento farmacológico , Quimiocinas/análise , Quimiocinas/metabolismo , Modelos Animais de Doenças , Doxiciclina/administração & dosagem , Quimioterapia Combinada , Feminino , Humanos , Estimativa de Kaplan-Meier , Metaloproteinase 9 da Matriz/análise , Metaloproteinase 9 da Matriz/metabolismo , Meningite Meningocócica/mortalidade , Camundongos , Camundongos Endogâmicos BALB C , Distribuição Aleatória , Resultado do Tratamento
3.
Sci Rep ; 7: 44625, 2017 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-28300164

RESUMO

Excessive neutrophilic inflammation contributes to brain pathology and adverse outcome in pneumococcal meningitis (PM). Recently, we identified the NLRP3 inflammasome/interleukin (IL)-1ß pathway as a key driver of inflammation in PM. A critical membrane receptor for NLRP3 inflammasome activation is the ATP-activated P2 purinoceptor (P2R) P2X7. Thus, we hypothesized involvement of ATP and P2Rs in PM. The functional role of ATP was investigated in a mouse meningitis model using P2R antagonists. Brain expression of P2Rs was assessed by RT-PCR. ATP levels were determined in murine CSF and cell culture experiments. Treatment with the P2R antagonists suramin or brilliant blue G did not have any impact on disease course. This lack of effect might be attributed to meningitis-associated down-regulation of brain P2R expression and/or a drop of cerebrospinal fluid (CSF) ATP, as demonstrated by RT-PCR and ATP analyses. Supplemental cell culture experiments suggest that the reduction in CSF ATP is, at least partly, due to ATP hydrolysis by ectonucleotidases of neutrophils and macrophages. In conclusion, this study suggests that ATP-P2R signaling is only of minor or even no significance in PM. This may be explained by down-regulation of P2R expression and decreased CSF ATP levels.


Assuntos
Meningite Pneumocócica/metabolismo , Receptores Purinérgicos/metabolismo , Transdução de Sinais , Trifosfato de Adenosina/líquido cefalorraquidiano , Animais , Antígenos CD/metabolismo , Apirase/metabolismo , Células da Medula Óssea/efeitos dos fármacos , Células da Medula Óssea/metabolismo , Encéfalo/metabolismo , Progressão da Doença , Espaço Extracelular/metabolismo , Ativação de Macrófagos/efeitos dos fármacos , Masculino , Meningite Pneumocócica/líquido cefalorraquidiano , Meningite Pneumocócica/microbiologia , Meningite Pneumocócica/patologia , Camundongos Endogâmicos C57BL , Neutrófilos/efeitos dos fármacos , Neutrófilos/metabolismo , Antagonistas Purinérgicos/farmacologia , Transdução de Sinais/efeitos dos fármacos , Streptococcus pneumoniae/efeitos dos fármacos , Streptococcus pneumoniae/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA