Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Métodos Terapêuticos e Terapias MTCI
Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Biomol Struct Dyn ; : 1-20, 2023 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-38088340

RESUMO

Male sexual dysfunction is considered one of the major consequences of diabetes mellitus. The medicinal plant, Mimosa pudica Linn. is believed to have numerous therapeutic effects, including anti-diabetic, anti-obesity, aphrodisiac, and a sexual behaviour-enhancing properties. In the present study, the significant effect of ethanolic extract of M. pudica L. to scavenge excessive free radicals and alleviate the deleterious effects of alloxan-induced diabetes on the male sexual system of rats was demonstrated. The rats treated with the M. pudica L. extract recovered their body weight, the weight of their reproductive organs, the characteristics of the sperm and the histocellular arrangement of the testes. In addition, significant levels of hormones (testosterone, follicle-stimulating hormone and luteinising hormone) increased in both serum and testicular homogenates of male diabetic rats treated with M. pudica L. extract. Further, antioxidant enzymes, SOD, CAT, GSH, and GPx levels are increased, and oxidative stress markers MDA and ROS are reduced in both serum and testicular homogenates of M. pudica L. extract treated male rats. Furthermore, an in silico molecular docking study was performed to predict high potential compounds of M. pudica L. extract against the PDE5 receptor. Two bioactive compounds, namely 3-Dibenzofuranamine (-11.1 kcal × mol-1), Stigmasta-7,16-dien-3-ol (-10.4 kcal × mol-1) showed the highest binding affinities with PDE5 enzyme, much higher than the reference drug sildenafil (-9.9 kcal × mol-1). According to these findings, bioactive compounds rich in ethanolic extract of M. pudica L. have significant aphrodisiac performance in diabetic rats.Communicated by Ramaswamy H. Sarma.

2.
Molecules ; 28(11)2023 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-37299017

RESUMO

The present study investigated the antioxidant potential of aqueous methanolic extracts of Hemidesmus indicus (L.) R.Br., followed by a pharmacoinformatics-based screening of novel Keap1 protein inhibitors. Initially, the antioxidant potential of this plant extract was assessed via antioxidant assays (DPPH, ABTS radical scavenging, and FRAP). Furthermore, 69 phytocompounds in total were derived from this plant using the IMPPAT database, and their three-dimensional structures were obtained from the PubChem database. The chosen 69 phytocompounds were docked against the Kelch-Neh2 complex protein (PDB entry ID: 2flu, resolution 1.50 Å) along with the standard drug (CPUY192018). H. indicus (L.) R.Br. extract (100 µg × mL-1) showed 85 ± 2.917%, 78.783 ± 0.24% of DPPH, ABTS radicals scavenging activity, and 161 ± 4 µg × mol (Fe (II)) g-1 ferric ion reducing power. The three top-scored hits, namely Hemidescine (-11.30 Kcal × mol-1), Beta-Amyrin (-10.00 Kcal × mol-1), and Quercetin (-9.80 Kcal × mol-1), were selected based on their binding affinities. MD simulation studies showed that all the protein-ligand complexes (Keap1-HEM, Keap1-BET, and Keap1-QUE) were highly stable during the entire simulation period, compared with the standard CPUY192018-Keap1 complex. Based on these findings, the three top-scored phytocompounds may be used as significant and safe Keap1 inhibitors, and could potentially be used for the treatment of oxidative-stress-induced health complications.


Assuntos
Antioxidantes , Hemidesmus , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Hemidesmus/química , Hemidesmus/metabolismo , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Estresse Oxidativo , Extratos Vegetais/química
3.
Molecules ; 27(24)2022 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-36557944

RESUMO

Endophytic fungi are a diverse group of microorganisms that colonize the inter- or intracellular spaces of plants and exhibit mutual benefits. Their interactions with the host plant and other microbiomes are multidimensional and play a crucial role in the production of secondary metabolites. We screened bioactive compounds present in the extracts of Aspergillus flavus, an endophytic fungus isolated from the roots of the medicinal grass Cynodon dactylon, for its anticancer potential. An in vitro analysis of the Ethyl acetate extract from A. flavus showed significant cytostatic effects (IC50: 16.25 µg/mL) against breast cancer cells (MCF-7). A morphological analysis of the cells and a flow cytometry of the cells with annexin V/Propidium Iodide suggested that the extract induced apoptosis in the MCF-7 cells. The extract of A. flavus increased reactive oxygen species (ROS) generation and caused a loss of mitochondrial membrane potential in MCF-7 cells. To identify the metabolites that might be responsible for the anticancer effect, the extract was subjected to a gas chromatography-mass spectrometry (GC-MS) analysis. Interestingly, nine phytochemicals that induced cytotoxicity in the breast cancer cell line were found in the extract. The in silico molecular docking and molecular dynamics simulation studies revealed that two compounds, 2,4,7-trinitrofluorenone and 3α, 5 α-cyclo-ergosta-7,9(11), 22t-triene-6beta-ol exhibited significant binding affinities (-9.20, and -9.50 Kcal/mol, respectively) against Bcl-2, along with binding stability and intermolecular interactions of its ligand-Bcl-2 complexes. Overall, the study found that the endophytic A. flavus from C. dactylon contains plant-like bioactive compounds that have a promising effect in breast cancer.


Assuntos
Antineoplásicos , Neoplasias da Mama , Humanos , Feminino , Aspergillus flavus/metabolismo , Cynodon/metabolismo , Neoplasias da Mama/tratamento farmacológico , Simulação de Acoplamento Molecular , Fungos/química , Antineoplásicos/química
4.
Cancers (Basel) ; 14(14)2022 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-35884549

RESUMO

The current study focuses on developing a tumour-targeted functionalised nanocarrier that wraps hollow mesoporous silica nanoparticles. The guanidine carbonate and curcumin are immobilised on the surface of 3-aminopropyl-triethoxy silane (APTES)-decorated hollow mesoporous silica nanoparticles (HMSNP), as confirmed through XPS and NMR analysis. XPS analysis demonstrates that the shape of the hysteresis loops is modified and that pore volume and pore diameter are consequently decreased compared to control. Guanidine (85%) and guanidine-curcumin complex (90%) were successfully encapsulated in HMSNAP and showed a 90% effective and sustained release at pH 7.4 for up to 72 h. Acridine orange/ethidium bromide dual staining determined that GuC-HMNSAP induced more late apoptosis and necrosis at 48 and 72 h compared with Gu-HMNSAP-treated cells. Molecular investigation of guanidine-mediated apoptosis was analysed using western blotting. It was found that cleaved caspases, c-PARP, and GSK-3ß (Ser9) had increased activity in MCF-7 cells. GuC-HMSNAP increased the activity of phosphorylation of oncogenic proteins such as Akt (Ser473), c-Raf (Ser249), PDK1 (Ser241), PTEN (Ser380), and GSK-3ß (Ser9), thus inducing cell death in MCF-7 cells. Altogether, our findings confirm that GuC-HMNSAP induces cell death by precisely associating with tumour-suppressing proteins, which may lead to new therapeutic approaches for breast cancer therapy.

5.
Nanomaterials (Basel) ; 12(9)2022 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-35564180

RESUMO

The main aims in the development of a novel drug delivery vehicle is to efficiently carry therapeutic drugs in the body's circulatory system and successfully deliver them to the targeted site as needed to safely achieve the desired therapeutic effect. In the present study, a passive targeted functionalised nanocarrier was fabricated or wrapped the hollow mesoporous silica nanoparticles with 3-aminopropyl triethoxysilane (APTES) to prepare APTES-coated hollow mesoporous silica nanoparticles (HMSNAP). A nitrogen sorption analysis confirmed that the shape of hysteresis loops is altered, and subsequently the pore volume and pore diameters of GaC-HMSNAP was reduced by around 56 and 37%, respectively, when compared with HMSNAP. The physico-chemical characterisation studies of fabricated HMSNAP, Ga-HMSNAP and GaC-HMSNAP have confirmed their stability. The drug release capacity of the fabricated Ga-HMSNAP and GaC-HMSNAP for delivery of gallium and curcumin was evaluated in the phosphate buffered saline (pH 3.0, 6.0 and 7.4). In an in silico molecular docking study of the gallium-curcumin complex in PDI, calnexin, HSP60, PDK, caspase 9, Akt1 and PTEN were found to be strong binding. In vitro antitumor activity of both Ga-HMSNAP and GaC-HMSNAP treated MCF-7 cells was investigated in a dose and time-dependent manner. The IC50 values of GaC-HMSNAP (25 µM) were significantly reduced when compared with free gallium concentration (40 µM). The mechanism of gallium-mediated apoptosis was analyzed through western blotting and GaC-HMSNAP has increased caspases 9, 6, cleaved caspase 6, PARP, and GSK 3ß(S9) in MCF-7 cells. Similarly, GaC-HMSNAP is reduced mitochondrial proteins such as prohibitin1, HSP60, and SOD1. The phosphorylation of oncogenic proteins such as Akt (S473), c-Raf (S249) PDK1 (S241) and induced cell death in MCF-7 cells. Furthermore, the findings revealed that Ga-HMSNAP and GaC-HMSNAP provide a controlled release of loaded gallium, curcumin and their complex. Altogether, our results depicted that GaC-HMNSAP induced cell death through the mitochondrial intrinsic cell death pathway, which could lead to novel therapeutic strategies for breast adenocarcinoma therapy.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA