Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Br J Pharmacol ; 174(17): 2897-2911, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28622417

RESUMO

BACKGROUND AND PURPOSE: The mechanism of the anti-migraine action of extracts of butterbur [Petasites hybridus (L.) Gaertn.] is unknown. Here, we investigated the ability of isopetasin, a major constituent of these extracts, to specifically target TRPA1 channel and to affect functional responses relevant to migraine. EXPERIMENTAL APPROACH: Single-cell calcium imaging and patch-clamp recordings in human and rodent TRPA1-expressing cells, neurogenic motor responses in rodent isolated urinary bladder, release of CGRP from mouse spinal cord in vitro and facial rubbing in mice and meningeal blood flow in rats were examined. KEY RESULTS: Isopetasin induced (i) calcium responses and currents in rat/mouse trigeminal ganglion (TG) neurons and in cells expressing the human TRPA1, (ii) substance P-mediated contractions of rat isolated urinary bladders and (iii) CGRP release from mouse dorsal spinal cord, responses that were selectively abolished by genetic deletion or pharmacological antagonism of TRPA1 channels. Pre-exposure to isopetasin produced marked desensitization of allyl isothiocyanate (AITC, TRPA1 channel agonist)- or capsaicin (TRPV1 channel agonist)-evoked currents in rat TG neurons, contractions of rat or mouse bladder and CGRP release from mouse central terminals of primary sensory neurons. Repeated intragastric administration of isopetasin attenuated mouse facial rubbing, evoked by local AITC or capsaicin, and dilation of rat meningeal arteries by acrolein or ethanol (TRPA1 and TRPV1 channel agonists respectively). CONCLUSION AND IMPLICATIONS: Activation of TRPA1 channels by isopetasin results in excitation of neuropeptide-containing nociceptors, followed by marked heterologous neuronal desensitization. Such atten uation in pain and neurogenic inflammation may account for the anti-migraine action of butterbur.


Assuntos
Petasites , Extratos Vegetais/química , Sesquiterpenos/farmacologia , Canal de Cátion TRPA1/fisiologia , Animais , Células Cultivadas , Células HEK293 , Humanos , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Transtornos de Enxaqueca/tratamento farmacológico , Nociceptores/metabolismo , Ratos Sprague-Dawley , Células Receptoras Sensoriais/efeitos dos fármacos , Células Receptoras Sensoriais/fisiologia , Medula Espinal/efeitos dos fármacos , Medula Espinal/fisiologia , Bexiga Urinária/efeitos dos fármacos , Bexiga Urinária/fisiologia
2.
Pain ; 154(12): 2750-2758, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23933184

RESUMO

Although feverfew has been used for centuries to treat pain and headaches and is recommended for migraine treatment, the mechanism for its protective action remains unknown. Migraine is triggered by calcitonin gene-related peptide (CGRP) release from trigeminal neurons. Peptidergic sensory neurons express a series of transient receptor potential (TRP) channels, including the ankyrin 1 (TRPA1) channel. Recent findings have identified agents either inhaled from the environment or produced endogenously that are known to trigger migraine or cluster headache attacks, such as TRPA1 simulants. A major constituent of feverfew, parthenolide, may interact with TRPA1 nucleophilic sites, suggesting that feverfew's antimigraine effect derives from its ability to target TRPA1. We found that parthenolide stimulates recombinant (transfected cells) or natively expressed (rat/mouse trigeminal neurons) TRPA1, where it, however, behaves as a partial agonist. Furthermore, in rodents, after initial stimulation, parthenolide desensitizes the TRPA1 channel and renders peptidergic TRPA1-expressing nerve terminals unresponsive to any stimulus. This effect of parthenolide abrogates nociceptive responses evoked by stimulation of peripheral trigeminal endings. TRPA1 targeting and neuronal desensitization by parthenolide inhibits CGRP release from trigeminal neurons and CGRP-mediated meningeal vasodilatation, evoked by either TRPA1 agonists or other unspecific stimuli. TRPA1 partial agonism, together with desensitization and nociceptor defunctionalization, ultimately resulting in inhibition of CGRP release within the trigeminovascular system, may contribute to the antimigraine effect of parthenolide.


Assuntos
Sistemas de Liberação de Medicamentos/métodos , Nociceptividade/efeitos dos fármacos , Sesquiterpenos/administração & dosagem , Canais de Potencial de Receptor Transitório/agonistas , Nervo Trigêmeo/efeitos dos fármacos , Vasodilatação/efeitos dos fármacos , Animais , Anti-Inflamatórios não Esteroides/administração & dosagem , Células CHO , Cricetinae , Cricetulus , Flores , Células HEK293 , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Nociceptividade/fisiologia , Extratos Vegetais/administração & dosagem , Ratos , Ratos Sprague-Dawley , Canal de Cátion TRPA1 , Tanacetum parthenium , Canais de Potencial de Receptor Transitório/biossíntese , Gânglio Trigeminal/efeitos dos fármacos , Gânglio Trigeminal/metabolismo , Nervo Trigêmeo/metabolismo , Vasodilatação/fisiologia
3.
Pain ; 153(9): 1949-1958, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22809691

RESUMO

Activation of transient receptor potential ankyrin-1 (TRPA1) on meningeal nerve endings has been suggested to contribute to environmental irritant-induced headache, but this channel may also contribute to other forms of headache, such as migraine. The preclinical studies described here examined functional expression of TRPA1 on dural afferents and investigated whether activation of TRPA1 contributes to headache-like behaviors. Whole-cell patch-clamp recordings were performed in vitro with 2 TRPA1 agonists, mustard oil (MO), and the environmental irritant umbellulone (UMB) on dural-projecting trigeminal ganglion neurons. Application of MO and UMB to dural afferents produced TRPA1-like currents in approximately 42% and 38% of cells, respectively. By means of an established in vivo behavioral model of migraine-related allodynia, dural application of MO and UMB produced robust time-related tactile facial and hind paw allodynia that was attenuated by pretreatment with the TRPA1 antagonist HC-030031. Additionally, MO or UMB were applied to the dura, and exploratory activity was monitored for 30min with an automated open-field activity chamber. Dural MO and UMB decreased the number of vertical rearing episodes and the time spent rearing in comparison to vehicle-treated animals. This change in activity was prevented in rats pretreated with HC-030031 as well as sumatriptan, a clinically effective antimigraine agent. These data indicate that TRPA1 is expressed on a substantial fraction of dural afferents, and activation of meningeal TRPA1 produces behaviors consistent with those observed in patients during migraine attacks. Further, they suggest that activation of meningeal TRPA1 via endogenous or exogenous mechanisms can lead to afferent signaling and headache.


Assuntos
Cefaleia/metabolismo , Neurônios Aferentes/metabolismo , Canais de Cátion TRPC/metabolismo , Gânglio Trigeminal/metabolismo , Animais , Dura-Máter/efeitos dos fármacos , Dura-Máter/metabolismo , Técnicas In Vitro , Irritantes/farmacologia , Masculino , Monoterpenos/farmacologia , Mostardeira , Neurônios Aferentes/efeitos dos fármacos , Técnicas de Patch-Clamp , Óleos de Plantas/farmacologia , Ratos , Ratos Sprague-Dawley , Canal de Cátion TRPA1 , Canais de Cátion TRPC/agonistas , Gânglio Trigeminal/efeitos dos fármacos
4.
Brain ; 135(Pt 2): 376-90, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22036959

RESUMO

The California bay laurel or Umbellularia californica (Hook. & Arn.) Nutt., is known as the 'headache tree' because the inhalation of its vapours can cause severe headache crises. However, the underlying mechanism of the headache precipitating properties of Umbellularia californica is unknown. The monoterpene ketone umbellulone, the major volatile constituent of the leaves of Umbellularia californica, has irritating properties, and is a reactive molecule that rapidly binds thiols. Thus, we hypothesized that umbellulone stimulates the transient receptor potential ankyrin 1 channel in a subset of peptidergic, nocioceptive neurons, activating the trigeminovascular system via this mechanism. Umbellulone, from µM to sub-mM concentrations, selectively stimulated transient receptor potential ankyrin 1-expressing HEK293 cells and rat trigeminal ganglion neurons, but not untransfected cells or neurons in the presence of the selective transient receptor potential ankyrin 1 antagonist, HC-030031. Umbellulone evoked a calcium-dependent release of calcitonin gene-related peptide from rodent trigeminal nerve terminals in the dura mater. In wild-type mice, umbellulone elicited excitation of trigeminal neurons and released calcitonin gene-related peptide from sensory nerve terminals. These two responses were absent in transient receptor potential ankyrin 1 deficient mice. Umbellulone caused nocioceptive behaviour after stimulation of trigeminal nerve terminals in wild-type, but not transient receptor potential ankyrin 1 deficient mice. Intranasal application or intravenous injection of umbellulone increased rat meningeal blood flow in a dose-dependent manner; a response selectively inhibited by systemic administration of transient receptor potential ankyrin 1 or calcitonin gene-related peptide receptor antagonists. These data indicate that umbellulone activates, through a transient receptor potential ankyrin 1-dependent mechanism, the trigeminovascular system, thereby causing nocioceptive responses and calcitonin gene-related peptide release. Pharmacokinetics of umbellulone, given by either intravenous or intranasal administration, suggest that transient receptor potential ankyrin 1 stimulation, which eventually results in meningeal vasodilatation, may be produced via two different pathways, depending on the dose. Transient receptor potential ankyrin 1 activation may either be caused directly by umbellulone, which diffuses from the nasal mucosa to perivascular nerve terminals in meningeal vessels, or by stimulation of trigeminal endings within the nasal mucosa and activation of reflex pathways. Transient receptor potential ankyrin 1 activation represents a plausible mechanism for Umbellularia californica-induced headache. Present data also strengthen the hypothesis that a series of agents, including chlorine, cigarette smoke, formaldehyde and others that are known to be headache triggers and recently identified as transient receptor potential ankyrin 1 agonists, utilize the activation of this channel on trigeminal nerves to produce head pain.


Assuntos
Compostos Bicíclicos com Pontes/farmacologia , Cicloexanonas/farmacologia , Extratos Vegetais/farmacologia , Canais de Potencial de Receptor Transitório/genética , Gânglio Trigeminal/efeitos dos fármacos , Nervo Trigêmeo/efeitos dos fármacos , Umbellularia , Animais , Peptídeo Relacionado com Gene de Calcitonina/metabolismo , Dura-Máter/irrigação sanguínea , Dura-Máter/efeitos dos fármacos , Dura-Máter/metabolismo , Células HEK293 , Humanos , Masculino , Camundongos , Camundongos Transgênicos , Monoterpenos , Ratos , Ratos Sprague-Dawley , Canal de Cátion TRPA1 , Canais de Potencial de Receptor Transitório/metabolismo , Gânglio Trigeminal/citologia , Gânglio Trigeminal/metabolismo , Nervo Trigêmeo/metabolismo
5.
Biol Pharm Bull ; 33(8): 1319-23, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20686225

RESUMO

Ingestion of elevated amounts of ethanol in humans and rodents induces hemorrhagic gastric lesions, at least in part by increasing oxidative stress. The present study was undertaken in order to evaluate the influence of a bicarbonate-alkaline mineral water (Uliveto on ethanol-induced hemorrhagic gastric lesions in mice. Lesions were evaluated by both macroscopic and microscopic analysis. In a first set of experiments, mice were allowed to drink Uliveto or reference water ad libitum until 3 h prior to intragastric (i.g.) ethanol (23 ml/kg) administration. Neither Uliveto nor reference water did afford any protection. In a second set of experiments, acute exposure to reference water (35 ml/kg, i.g.), given 30 min before ethanol, did not inhibit gastric lesions. However, administration of the same amount of Uliveto caused a remarkable reduction in ethanol-evoked gastric lesions. Ethanol administration increased 4-hydroxy-2-nonenal levels, a byproduct of oxidative stress, in the luminal part of the gastric mucosa. This response was substantially reduced by about 70% by Uliveto, but not by reference water. Reference water, added with the bicarbonate content, present in the Uliveto water, protected against ethanol-induced lesions. Thus, acute pre-exposure to bicarbonate-alkaline mineral water (Uliveto) protects from both oxidative stress and hemorrhagic gastric lesions caused by ethanol. The elevated bicarbonate content of Uliveto likely accounts for the protection against ethanol-induced gastric injury.


Assuntos
Bicarbonatos , Etanol/toxicidade , Hemorragia Gastrointestinal/prevenção & controle , Águas Minerais/uso terapêutico , Gastropatias/prevenção & controle , Aldeídos/metabolismo , Animais , Bicarbonatos/análise , Dinoprostona/metabolismo , Modelos Animais de Doenças , Mucosa Gástrica/efeitos dos fármacos , Mucosa Gástrica/metabolismo , Mucosa Gástrica/patologia , Hemorragia Gastrointestinal/induzido quimicamente , Hemorragia Gastrointestinal/metabolismo , Hemorragia Gastrointestinal/patologia , Histidina/metabolismo , Imuno-Histoquímica , Masculino , Camundongos , Águas Minerais/administração & dosagem , Águas Minerais/análise , Estresse Oxidativo/efeitos dos fármacos , Ligação Proteica , Gastropatias/induzido quimicamente , Gastropatias/metabolismo , Gastropatias/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA