Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Eur J Nutr ; 59(2): 729-739, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30859363

RESUMO

OBJECTIVE: Choline and docosahexaenoic acid (DHA) are essential nutrients for preterm infant development. They are metabolically linked via phosphatidylcholine (PC), a constitutive plasma membrane lipid and the major transport form of DHA in plasma. Plasma choline and DHA-PC concentrations rapidly decline after preterm birth. To improve preterm infant nutrition, we evaluated combined compared to exclusive choline and DHA supplementation, and standard feeding. DESIGN: Randomized partially blinded single-center trial. SETTING: Neonatal tertiary referral center in Tübingen, Germany. PATIENTS: 24 inborn preterm infants < 32 week postmenstrual age. INTERVENTIONS: Standard nutrition (control) or, additionally, enteral choline (30 mg/kg/day), DHA (60 mg/kg/day), or both for 10 days. Single enteral administration of 3.6 mg/kg [methyl-D9-] choline chloride as a tracer at 7.5 days. MAIN OUTCOME MEASURES: Primary outcome variable was plasma choline following 7 days of supplementation. Deuterated and unlabeled choline metabolites, DHA-PC, and other PC species were secondary outcome variables. RESULTS: Choline supplementation increased plasma choline to near-fetal concentrations [35.4 (32.8-41.7) µmol/L vs. 17.8 (16.1-22.4) µmol/L, p < 0.01] and decreased D9-choline enrichment of PC. Single DHA treatment decreased DHA in PC relative to total lipid [66 (60-68)% vs. 78 (74-80)%; p < 0.01], which was prevented by choline. DHA alone increased DHA-PC only by 35 (26-45)%, but combined treatment by 63 (49-74)% (p < 0.001). D9-choline enrichment showed preferential synthesis of PC containing linoleic acid. PC synthesis via phosphatidylethanolamine methylation resulted in preferential synthesis of DHA-containing D3-PC, which was increased by choline supplementation. CONCLUSIONS: 30 mg/kg/day additional choline supplementation increases plasma choline to near-fetal concentrations, dilutes the D9-choline tracer via increased precursor concentrations and improves DHA homeostasis in preterm infants. TRIAL REGISTRATION: clinicaltrials.gov. Identifier: NCT02509728.


Assuntos
Colina/sangue , Colina/farmacologia , Ácidos Docosa-Hexaenoicos/sangue , Ácidos Docosa-Hexaenoicos/farmacologia , Fenômenos Fisiológicos da Nutrição do Lactente/efeitos dos fármacos , Recém-Nascido Prematuro , Biomarcadores/sangue , Colina/administração & dosagem , Suplementos Nutricionais , Ácidos Docosa-Hexaenoicos/administração & dosagem , Quimioterapia Combinada/métodos , Nutrição Enteral/métodos , Feminino , Alemanha , Humanos , Recém-Nascido , Masculino
2.
Eur J Nutr ; 57(6): 2105-2112, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28638995

RESUMO

BACKGROUND: Docosahexaenoic (C22:6) and arachidonic (C20:4) acids are long-chain polyunsaturated fatty acids (LC-PUFA) essential to neonatal development, being present in the glycerophospholipids of all organs, particularly the brain. In plasma, LC-PUFAs are mainly present in lipoprotein lipids, which are neutral lipids (triglycerides and cholesterol esters) and glycerophospholipids, like choline containing phosphatidylcholine (PC). PURPOSE: To guide future supplementation strategies of C22:6 and C20:4 in combination with choline, we determined the distribution of C20:4 and C22:6 between PC and neutral lipid. METHODS: Preterm infant plasma (N = 59, postmenstrual age [PMA] 33.9 wk (32.4-36.0)) and cord plasma (N = 34, PMA 34.0 wk (30.86-38.4)) were investigated. PC and neutral lipids were extracted and analyzed using tandem mass spectrometry and gas chromatography, respectively. Data are reported as medians and 25th/75th percentiles. RESULTS: In cord blood, C20:4-PC and C22:6-PC comprised 36.1% (34.2-38.6) and 10.2% (8.8-12.8) of total PC, respectively. In preterm infant plasma, values were only 20.8% (19.2-23.1) and 5.7% (5.2-6.0), respectively (p < 0.001 each). Nevertheless, in preterm infant plasma, 80.6% (77.6-83.0) of C20:4 and 86.0% (83.0-88.9) of C22:6 were found in PC. These values exceeded the proportions of C20:4 and C22:6 in PC of cord plasma [71.3% (67.8-72.9) and 79.2% (75.2-85.4), respectively] (p < 0.0001 each). CONCLUSION: Irrespective of the low proportions of C20:4-PC and C22:6-PC in preterm infant plasma lipids, PC is the major transporter for C20:4 and C22:6. Our data support the hypotheses that choline deficiency may impair end-organ availability of these LC-PUFA in preterm infants. Therefore, supplementation of C20:4 and C22:6 might better be accompanied by choline supplementation.


Assuntos
Ácidos Graxos Insaturados/metabolismo , Recém-Nascido Prematuro , Fosfatidilcolinas/metabolismo , Ácidos Graxos , Feminino , Cromatografia Gasosa-Espectrometria de Massas , Alemanha , Humanos , Recém-Nascido , Masculino , Estado Nutricional
3.
Eur J Nutr ; 56(4): 1733-1742, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27164830

RESUMO

BACKGROUND: Choline, docosahexaenoic acid (DHA), and arachidonic acid (ARA) are essential to fetal development, particularly of the brain. These components are actively enriched in the fetus. Deprivation from placental supply may therefore result in impaired accretion in preterm infants. OBJECTIVE: To determine choline, choline metabolites, DHA, and ARA in human breast milk (BM) of preterm infants compared to BM of term born infants. DESIGN: We collected expressed BM samples from 34 mothers (N = 353; postnatal day 6-85), who had delivered 35 preterm infants undergoing neonatal intensive care (postmenstrual age 30 weeks, range 25.4-32.0), and from mothers after term delivery (N = 9; postnatal day 6-118). Target metabolites were analyzed using tandem mass spectrometry and gas chromatography and reported as medians and 25th/75th percentiles. RESULTS: In BM, choline was mainly present in the form of phosphocholine and glycerophosphocholine, followed by free choline, phosphatidylcholine, sphingomyelin, and lyso-phosphatidylcholine. In preterm infants' BM total choline ranged from 61 to 360 mg/L (median: 158 mg/L) and was decreased compared to term infants' BM (range 142-343 mg/L; median: 258 mg/L; p < 0.01). ARA and DHA comprised 0.81 (range: 0.46-1.60) and 0.43 (0.15-2.42) % of total preterm BM lipids, whereas term BM values were 0.68 (0.52-0.88) and 0.35 (0.18-0.75) %, respectively. Concentrations of all target parameters decreased after birth, and frequently 150 ml/kg/d BM did not meet the estimated fetal accretion rates. CONCLUSIONS: Following preterm delivery, BM choline concentrations are lower, whereas ARA and DHA levels are comparable versus term delivery. Based on these findings we suggest a combined supplementation of preterm infants' BM with choline, ARA and DHA combined to improve the nutritional status of preterm infants. STUDY REGISTRATION: This study was registered at www.clinicaltrials.gov. Identifier: NCT01773902.


Assuntos
Colina/administração & dosagem , Ácidos Graxos Insaturados/administração & dosagem , Recém-Nascido Prematuro/sangue , Leite Humano/química , Adulto , Ácido Araquidônico/administração & dosagem , Ácido Araquidônico/sangue , Colesterol/sangue , Colina/sangue , Suplementos Nutricionais , Feminino , Humanos , Lactente , Recém-Nascido , Recém-Nascido Prematuro/crescimento & desenvolvimento , Masculino , Estado Nutricional , Triglicerídeos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA