Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Métodos Terapêuticos e Terapias MTCI
Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Clin Oral Investig ; 26(3): 3151-3166, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35006293

RESUMO

OBJECTIVES: This study's aim was to investigate the safety and performance of a self-assembling peptide matrix (SAPM) P11-4 for the treatment of periodontal disease in a controlled pre-clinical study. MATERIALS AND METHODS: Acute buccal bony dehiscence defects (LxW: 5 × 3 mm) were surgically created on the distal root of four teeth on one mandible side of 7 beagle dogs followed by another identical surgery 8 weeks later on the contralateral side. SAPM P11-4 (with and without root conditioning with 24% EDTA (T1, T2)), Emdogain® (C) and a sham intervention (S) were randomly applied on the four defects at each time point. Four weeks after the second surgery and treatment, the animals were sacrificed, the mandibles measured by micro-computed tomography (µ-CT) and sections of the tissue were stained and evaluated histologically. RESULTS: Clinically and histologically, no safety concerns or pathological issues due to the treatments were observed in any of the study groups at any time point. All groups showed overall similar results after 4 and 12 weeks of healing regarding new cementum, functionality of newly formed periodontal ligament and recovery of height and volume of the new alveolar bone and mineral density. CONCLUSION: A controlled clinical study in humans should be performed in a next step as no adverse effects or safety issues, which might affect clinical usage of the product, were observed. CLINICAL RELEVANCE: The synthetic SAPM P11-4 may offer an alternative to the animal-derived product Emdogain® in the future.


Assuntos
Regeneração Tecidual Guiada Periodontal , Oligopeptídeos , Ligamento Periodontal , Perda do Osso Alveolar/diagnóstico por imagem , Perda do Osso Alveolar/patologia , Perda do Osso Alveolar/cirurgia , Animais , Regeneração Óssea , Cemento Dentário , Cães , Regeneração Tecidual Guiada Periodontal/veterinária , Mandíbula/cirurgia , Oligopeptídeos/efeitos adversos , Ligamento Periodontal/patologia , Raiz Dentária/cirurgia , Microtomografia por Raio-X
2.
Int J Nanomedicine ; 13: 6717-6733, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30425485

RESUMO

BACKGROUND: The regeneration of tissue defects at the interface between soft and hard tissue, eg, in the periodontium, poses a challenge due to the divergent tissue requirements. A class of biomaterials that may support the regeneration at the soft-to-hard tissue interface are self-assembling peptides (SAPs), as their physicochemical and mechanical properties can be rationally designed to meet tissue requirements. MATERIALS AND METHODS: In this work, we investigated the effect of two single-component and two complementary ß-sheet forming SAP systems on their hydrogel properties such as nanofibrillar architecture, surface charge, and protein adsorption as well as their influence on cell adhesion, morphology, growth, and differentiation. RESULTS: We showed that these four 11-amino acid SAP (P11-SAP) hydrogels possessed physico-chemical characteristics dependent on their amino acid composition that allowed variabilities in nanofibrillar network architecture, surface charge, and protein adsorption (eg, the single-component systems demonstrated an ~30% higher porosity and an almost 2-fold higher protein adsorption compared with the complementary systems). Cytocompatibility studies revealed similar results for cells cultured on the four P11-SAP hydrogels compared with cells on standard cell culture surfaces. The single-component P11-SAP systems showed a 1.7-fold increase in cell adhesion and cellular growth compared with the complementary P11-SAP systems. Moreover, significantly enhanced osteogenic differentiation of human calvarial osteoblasts was detected for the single-component P11-SAP system hydrogels compared with standard cell cultures. CONCLUSION: Thus, single-component system P11-SAP hydrogels can be assessed as suitable scaffolds for periodontal regeneration therapy, as they provide adjustable, extracellular matrix-mimetic nanofibrillar architecture and favorable cellular interaction with periodontal cells.


Assuntos
Aminoácidos/química , Hidrogéis/química , Nanofibras/química , Osteoblastos/citologia , Osteogênese , Fragmentos de Peptídeos/química , Periodonto/citologia , Adesão Celular , Diferenciação Celular , Proliferação de Células , Células Cultivadas , Matriz Extracelular , Humanos , Técnicas In Vitro , Células-Tronco Neurais/citologia , Células-Tronco Neurais/fisiologia , Osteoblastos/fisiologia , Periodonto/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA