Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
BMC Plant Biol ; 16(1): 225, 2016 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-27733139

RESUMO

BACKGROUND: The ability to modulate levels of individual fatty acids within soybean oil has potential to increase shelf-life and frying stability and to improve nutritional characteristics. Commodity soybean oil contains high levels of polyunsaturated linoleic and linolenic acid, which contribute to oxidative instability - a problem that has been addressed through partial hydrogenation. However, partial hydrogenation increases levels of trans-fatty acids, which have been associated with cardiovascular disease. Previously, we generated soybean lines with knockout mutations within fatty acid desaturase 2-1A (FAD2-1A) and FAD2-1B genes, resulting in oil with increased levels of monounsaturated oleic acid (18:1) and decreased levels of linoleic (18:2) and linolenic acid (18:3). Here, we stack mutations within FAD2-1A and FAD2-1B with mutations in fatty acid desaturase 3A (FAD3A) to further decrease levels of linolenic acid. Mutations were introduced into FAD3A by directly delivering TALENs into fad2-1a fad2-1b soybean plants. RESULTS: Oil from fad2-1a fad2-1b fad3a plants had significantly lower levels of linolenic acid (2.5 %), as compared to fad2-1a fad2-1b plants (4.7 %). Furthermore, oil had significantly lower levels of linoleic acid (2.7 % compared to 5.1 %) and significantly higher levels of oleic acid (82.2 % compared to 77.5 %). Transgene-free fad2-1a fad2-1b fad3a soybean lines were identified. CONCLUSIONS: The methods presented here provide an efficient means for using sequence-specific nucleases to stack quality traits in soybean. The resulting product comprised oleic acid levels above 80 % and linoleic and linolenic acid levels below 3 %.


Assuntos
Glycine max/metabolismo , Ácido Oleico/genética , Proteínas de Plantas/metabolismo , Óleo de Soja/genética , Ácido alfa-Linolênico/genética , Edição de Genes , Mutação/genética , Ácido Oleico/metabolismo , Proteínas de Plantas/genética , Óleo de Soja/metabolismo , Glycine max/genética , Ácido alfa-Linolênico/metabolismo
2.
Plant Biotechnol J ; 14(1): 169-76, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25846201

RESUMO

Cold storage of potato tubers is commonly used to reduce sprouting and extend postharvest shelf life. However, cold temperature stimulates the accumulation of reducing sugars in potato tubers. Upon high-temperature processing, these reducing sugars react with free amino acids, resulting in brown, bitter-tasting products and elevated levels of acrylamide--a potential carcinogen. To minimize the accumulation of reducing sugars, RNA interference (RNAi) technology was used to silence the vacuolar invertase gene (VInv), which encodes a protein that breaks down sucrose to glucose and fructose. Because RNAi often results in incomplete gene silencing and requires the plant to be transgenic, here we used transcription activator-like effector nucleases (TALENs) to knockout VInv within the commercial potato variety, Ranger Russet. We isolated 18 plants containing mutations in at least one VInv allele, and five of these plants had mutations in all VInv alleles. Tubers from full VInv-knockout plants had undetectable levels of reducing sugars, and processed chips contained reduced levels of acrylamide and were lightly coloured. Furthermore, seven of the 18 modified plant lines appeared to contain no TALEN DNA insertions in the potato genome. These results provide a framework for using TALENs to quickly improve traits in commercially relevant autotetraploid potato lines.


Assuntos
Temperatura Baixa , Criopreservação/métodos , Técnicas de Inativação de Genes , Marcação de Genes , Solanum tuberosum/genética , Acrilamida/análise , Sequência de Bases , Carboidratos/análise , Genes de Plantas , Mutação/genética , Plantas Geneticamente Modificadas , Nucleases dos Efetores Semelhantes a Ativadores de Transcrição/metabolismo , Vacúolos/enzimologia , beta-Frutofuranosidase/genética
3.
Plant Biotechnol J ; 12(7): 934-40, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24851712

RESUMO

Soybean oil is high in polyunsaturated fats and is often partially hydrogenated to increase its shelf life and improve oxidative stability. The trans-fatty acids produced through hydrogenation pose a health threat. Soybean lines that are low in polyunsaturated fats were generated by introducing mutations in two fatty acid desaturase 2 genes (FAD2-1A and FAD2-1B), which in the seed convert the monounsaturated fat, oleic acid, to the polyunsaturated fat, linoleic acid. Transcription activator-like effector nucleases (TALENs) were engineered to recognize and cleave conserved DNA sequences in both genes. In four of 19 transgenic soybean lines expressing the TALENs, mutations in FAD2-1A and FAD2-1B were observed in DNA extracted from leaf tissue; three of the four lines transmitted heritable FAD2-1 mutations to the next generation. The fatty acid profile of the seed was dramatically changed in plants homozygous for mutations in both FAD2-1A and FAD2-1B: oleic acid increased from 20% to 80% and linoleic acid decreased from 50% to under 4%. Further, mutant plants were identified that lacked the TALEN transgene and only carried the targeted mutations. The ability to create a valuable trait in a single generation through targeted modification of a gene family demonstrates the power of TALENs for genome engineering and crop improvement.


Assuntos
Ácidos Graxos Dessaturases/genética , Glycine max/genética , Proteínas de Plantas/genética , Óleo de Soja/química , Sequência de Bases , Ácidos Graxos/metabolismo , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Mutação , Valor Nutritivo/genética , Ácido Oleico/metabolismo , Plantas Geneticamente Modificadas/química , Plantas Geneticamente Modificadas/metabolismo , Sementes/enzimologia , Sementes/genética , Sementes/metabolismo , Alinhamento de Sequência , Glycine max/enzimologia , Glycine max/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA