Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Dalton Trans ; 52(4): 962-970, 2023 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-36597846

RESUMO

Heterobimetallic tert-butoxides of alkali metal cations with tetravalent actinide centers exhibit two distinctive structural motifs, [AnM2(OtBu)6] and [AnM3(OtBu)7] (AnIV = Th, U and MI = Li, Na, K, Rb, Cs), evidently governed by the size of the alkali metal ions. Both [AnM3(OtBu)7] AnM3 (AnIV = U, MI = Li; AnIV = Th, MI = Li, Na) and [AnM2(OtBu)6] AnM2 (AnIV = U, MI = Na-Cs; AnIV = Th, MI = K-Cs) compounds are obtained in nearly quantitative yields by reacting actinide and alkali metal silyl amides with an excess of tert-butyl alcohol. The AnM3 complexes form a cubane-type coordination motif, whereas the AnM2 complexes display a geometry resembling two face-shared bipyramids. The sodium derivatives of thorium and uranium (ThNa3 and UNa2) allow the determination of the structural transition threshold as a function of the ratio of the ionic radii ri(AnIV)/ri(MI). The AnM3 complexes are formed for ratios above 0.92 and the AnM2 type is formed for ratios below 0.87. All compounds are unambiguously characterized in both solution and solid states by NMR and IR spectroscopic studies and single crystal X-ray diffraction analyses, respectively.


Assuntos
Metais Alcalinos , Urânio , Metais Alcalinos/química , Sódio/química , Lítio/química , Cátions , Urânio/química
2.
ACS Appl Mater Interfaces ; 7(12): 6530-40, 2015 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-25729881

RESUMO

Fully green and facile redox chemistry involving reduction of colloidal iron hydroxide (Fe(OH)3) through green tea (GT) polyphenols produced water-soluble Fe3O4 nanocrystals coated with GT extracts namely epigallocatechin gallate (EGCG) and epicatechin (EC). Electron donating polyphenols stoichiometrically reduced Fe(3+) ions into Fe(2+) ions resulting in the formation of magnetite (Fe3O4) nanoparticles and corresponding oxidized products (semiquinones and quinones) that simultaneously served as efficient surface chelators for the Fe3O4 nanoparticles making them dispersible and stable in water, PBS, and cell culture medium for extended time periods. As-formed iron oxide nanoparticles (2.5-6 nm) displayed high crystallinity and saturation magnetization as well as high relaxivity ratios manifested in strong contrast enhancement observed in T2-weighted images. Potential of green tea-coated superparamagnetic iron oxide nanocrystals (SPIONs) as superior negative contrast agents was confirmed by in vitro and in vivo experiments. Primary human macrophages (J774A.1) and colon cancer cells (CT26) were chosen to assess cytotoxicity and cellular uptake of GT-, EGCGq-, and ECq-coated Fe3O4 nanoparticles, which showed high uptake efficiencies by J774A.1 and CT26 cells without any additional transfection agent. Furthermore, the in vivo accumulation characteristics of GT-coated Fe3O4 nanoparticles were similar to those observed in clinical studies of SPIONs with comparable accumulation in epidermoid cancer-xenograft bearing mice. Given their promising transport and uptake characteristics and new surface chemistry, GT-SPIONs conjugates can be applied for multimodal imaging and therapeutic applications by anchoring further functionalities.


Assuntos
Camellia sinensis/química , Catequina/análogos & derivados , Catequina/química , Compostos Férricos/química , Imageamento por Ressonância Magnética/métodos , Nanopartículas/química , Extratos Vegetais/química , Animais , Linhagem Celular , Sobrevivência Celular , Humanos , Macrófagos/química , Macrófagos/citologia , Imageamento por Ressonância Magnética/instrumentação , Camundongos
3.
ACS Nano ; 7(11): 9655-63, 2013 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-24143894

RESUMO

Superparamagnetic iron oxide nanoparticles (SPIONs) coated with azide groups were functionalized at the surface with biotin (biotin@SPIONs) and cysteine protease inhibitor E-64 (E-64@SPIONs) with the purpose of developing nanoparticle-based assays for identifying cysteine proteases in proteomes. Magnetite particles (ca. 6 nm) were synthesized by microwave-assisted thermal decomposition of iron acetylacetonate and subsequently functionalized following a click chemistry protocol to obtain biotin and E-64 labeled particulate systems. Successful surface modification and covalent attachment of functional groups and molecules were confirmed by FT-IR spectroscopy and thermal gravimetric analysis. The ability of the surface-grafted biotin terminal groups to specifically interact with streptavidin (either horseradish peroxidase [(HRP)-luminol-H2O2] or rhodamine) was confirmed by chemiluminescent assay. A quantitative assessment showed a capture limit of 0.55-1.65 µg protein/100 µg particles. Furthermore, E-64@SPIONs were successfully used to specifically label papain-like cysteine proteases from crude plant extracts. Owing to the simplicity and versatility of the technique, together with the superparamagnetic behavior of FeOx-nanoparticles, the results demonstrate that click chemistry on surface anchored azide group is a viable approach toward bioconjugations that can be extended to other nanoparticles surfaces with different functional groups to target specific therapeutic and diagnostic applications.


Assuntos
Mineração de Dados/métodos , Nanopartículas/química , Proteoma , Azidas/química , Biotina/química , Química Click/métodos , Cisteína/química , Compostos Férricos/química , Leucina/análogos & derivados , Leucina/química , Luminescência , Magnetismo , Micro-Ondas , Nanotecnologia/métodos , Peptídeo Hidrolases/química , Proteínas de Plantas/química , Rodaminas/química , Espectroscopia de Infravermelho com Transformada de Fourier , Estreptavidina/química , Termogravimetria
4.
ACS Nano ; 6(3): 1925-38, 2012 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-22303956

RESUMO

Microsomal glutathione transferase 1 (MGST1) is an antioxidant enzyme located predominantly in the mitochondrial outer membrane and endoplasmic reticulum and has been shown to protect cells from lipid peroxidation induced by a variety of cytostatic drugs and pro-oxidant stimuli. We hypothesized that MGST1 may also protect against nanomaterial-induced cytotoxicity through a specific effect on lipid peroxidation. We evaluated the induction of cytotoxicity and oxidative stress by TiO(2), CeO(2), SiO(2), and ZnO in the human MCF-7 cell line with or without overexpression of MGST1. SiO(2) and ZnO nanoparticles caused dose- and time-dependent toxicity, whereas no obvious cytotoxic effects were induced by nanoparticles of TiO(2) and CeO(2). We also noted pronounced cytotoxicity for three out of four additional SiO(2) nanoparticles tested. Overexpression of MGST1 reversed the cytotoxicity of the main SiO(2) nanoparticles tested and for one of the supplementary SiO(2) nanoparticles but did not protect cells against ZnO-induced cytotoxic effects. The data point toward a role of lipid peroxidation in SiO(2) nanoparticle-induced cell death. For ZnO nanoparticles, rapid dissolution was observed, and the subsequent interaction of Zn(2+) with cellular targets is likely to contribute to the cytotoxic effects. A direct inhibition of MGST1 by Zn(2+) could provide a possible explanation for the lack of protection against ZnO nanoparticles in this model. Our data also showed that SiO(2) nanoparticle-induced cytotoxicity is mitigated in the presence of serum, potentially through masking of reactive surface groups by serum proteins, whereas ZnO nanoparticles were cytotoxic both in the presence and in the absence of serum.


Assuntos
Antioxidantes/metabolismo , Citotoxinas/toxicidade , Glutationa Transferase/metabolismo , Nanopartículas/toxicidade , Dióxido de Silício/toxicidade , Óxido de Zinco/toxicidade , Animais , Linhagem Celular Tumoral , Fenômenos Químicos , Humanos , Estresse Oxidativo/efeitos dos fármacos , Ratos , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA