Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Int J Biol Macromol ; 268(Pt 2): 131365, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38583829

RESUMO

Wounds are considered one of the most critical medical conditions that must be managed appropriately due to the psychological and physical stress they cause for patients, as well as creating a substantial financial burden on patients and global healthcare systems. Nowadays, there is a growing interest in developing nanofiber mats loaded with varying plant extracts to meet the urgent need for advanced wound ressings. This study investigated the development and characterization of poly(lactic acid) (PLA)/ poly(ethylene glycol) (PEG) nanofiber membranes incorporated with Ora-pro-nóbis (OPN; 12.5, 25, and 50 % w/w) by the solution-blow-spinning (SBS) technique. The PLA/PEG and PLA/PEG/OPN nanofiber membranes were characterized by scanning electron microscopy (SEM), thermal properties (TGA and DSC), Fourier transform infrared spectroscopy (FTIR), contact angle measurements and water vapor permeability (WVTR). In addition, the mats were analyzed for swelling properties in vitro cell viability, and fibroblast adhesion (L-929) tests. SEM images showed that smooth and continuous PLA/PEG and PLA/PEG/OPN nanofibers were obtained with a diameter distribution ranging from 171 to 1533 nm. The PLA/PEG and PLA/PEG/OPN nanofiber membranes showed moderate hydrophobicity (~109-120°), possibly preventing secondary injuries during dressing removal. Besides that, PLA/PEG/OPN nanofibers exhibited adequate WVTR, meeting wound healing requirements. Notably, the presence of OPN gave the PLA/PEG membranes better mechanical properties, increasing their tensile strength (TS) from 3.4 MPa (PLA/PEG) to 5.3 MPa (PLA/PEG/OPN), as well as excellent antioxidant properties (Antioxidant activity with approximately 45 % oxidation inhibition). Therefore, the nanofiber mats based on PLA/PEG, especially those incorporated with OPN, are promising options for use as antioxidant dressings to aid skin healing.


Assuntos
Bandagens , Membranas Artificiais , Nanofibras , Extratos Vegetais , Poliésteres , Polietilenoglicóis , Polietilenoglicóis/química , Poliésteres/química , Nanofibras/química , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Animais , Camundongos , Permeabilidade , Sobrevivência Celular/efeitos dos fármacos , Espectroscopia de Infravermelho com Transformada de Fourier , Antioxidantes/química , Antioxidantes/farmacologia , Linhagem Celular , Cicatrização/efeitos dos fármacos , Fibroblastos/efeitos dos fármacos
2.
Food Res Int ; 162(Pt A): 111914, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36461183

RESUMO

Colorimetric films incorporated with anthocyanins as an indicator for freshness monitoring have aroused growing interest recently. The pH-sensing colorimetric film were developed based on pectin (HM), containing aqueous hibiscus extract microparticles (HAE). HAE microparticles were obtained by spray drying with different wall materials (Inulin -IN, maltodextrin- MD and their combination). The films were obtained on large scale by continuous casting. These films were characterized for physicochemical analysis, morphological structure, thermal and barrier properties, antioxidant activity, and color change at different pH. The addition of HAE microparticles caused relevant changes to HM-based films, such as in mechanical behavior and improved barrier property (11-22% WVTR reduction) depending on the type of wall material used and the concentration added. It was verified with the thermal stability of films, with a slight increase being observed. The color variation of smart films was entirely pH-dependent. Overall, the proposed color indicator films showed unique features and functionalities and could be used as an alternative natural pH indicator in smart packaging systems.


Assuntos
Hibiscus , Antocianinas , Pectinas , Secagem por Atomização
3.
Food Chem ; 391: 133256, 2022 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-35623279

RESUMO

The aim of this study was to investigate the physicochemical, morphological, and gastrointestinal release properties of an anthocyanin-rich extract of grapes in alginate and pectin beads as carriers; the effects of ultrasonic gelation combined with emulsification were also investigated. In general, the alginate beads showed smaller size and more regular shape compared to pectin. The effect of emulsification combined with ionic gelation was more pronounced in the alginate beads and resulted in higher retention of anthocyanins, higher antioxidant capacity, and also allowed the best release profile during intestinal digestion. Thus, the simultaneous strategy could be an interesting delivery system and enhance the release of anthocyanins, providing an opportunity for the development of ingredients with different bioactive properties.


Assuntos
Antocianinas , Vitis , Alginatos/química , Antocianinas/química , Cápsulas , Preparações de Ação Retardada , Pectinas , Ultrassom
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA