Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Medicinas Complementares
Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Health Phys ; 125(4): 289-304, 2023 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-37548561

RESUMO

ABSTRACT: Following a nuclear fission event, there likely would be a large number of contaminated persons who would seek assistance at community reception centers to be established outside the affected area. This paper provides a methodology for calculating inhalation doses to public health and other response personnel at such facilities who would be receiving and assisting potentially contaminated persons from whom particles can be resuspended. Three hypothetical facilities were considered: the Base Case is a rather small room with no forced air ventilation. The Preferred Case, which is more realistic, is a mid-sized room with an operating HVAC system with air being recirculated through a filter. The Gymnasium Case has only fresh air intake. Initial bounding calculations for the Base Case indicated the need for pre-screening of arrivals to avoid unacceptable doses to staff. The screening criterion selected was 1.67 × 10 6 Bq m -2 . Calculations are presented for radionuclide concentrations in air, dose to staff from inhalation, and how exposures and the resulting doses can be altered by air-turnover rates and the use of filters with varying efficiency. Doses are presented for various arrival times and for both plutonium- and uranium-fueled detonations. The highest calculated dose via inhalation with no respiratory protection was 0.23 mSv for the Base Case. The more important radionuclides contributing to dose with exposure starting at day D + 1 were 239 Np and 133 I. At day D + 30, 131 I and 140 Ba were the more important dosimetrically. The variable creating the highest uncertainty was the slough-off factor for resuspension of contamination from people arriving at the reception center.


Assuntos
Poluentes Radioativos do Ar , Plutônio , Urânio , Humanos , Poluentes Radioativos do Ar/análise , Software , Pessoal de Saúde
2.
Acta Biomater ; 160: 14-31, 2023 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-36804821

RESUMO

At least 25 bioactive glass (BG) medical devices have been approved for clinical use by global regulatory agencies. Diverse applications include monolithic implants, bone void fillers, dentin hypersensitivity agents, wound dressing, and cancer therapeutics. The morphology and delivery systems of bioactive glasses have evolved dramatically since the first devices based on 45S5 Bioglass®. The particle size of these devices has generally decreased with the evolution of bioactive glass technology but primarily lies in the micron size range. Morphologies have progressed from glass monoliths to granules, putties, and cements, allowing medical professionals greater flexibility and control. Compositions of these commercial materials have primarily relied on silicate-based systems with varying concentrations of sodium, calcium, and phosphorus. Furthermore, therapeutic ions have been investigated and show promise for greater control of biological stimulation of genetic processes and increased bioactivity. Some commercial products have exploited the borate and phosphate-based compositions for soft tissue repair/regeneration. Mesoporous BGs also promise anticancer therapies due to their ability to deliver drugs in combination with radiotherapy, photothermal therapy, and magnetic hyperthermia. The objective of this article is to critically discuss all clinically approved bioactive glass products. Understanding essential regulatory standards and rules for production is presented through a review of the commercialization process. The future of bioactive glasses, their promising applications, and the challenges are outlined. STATEMENT OF SIGNIFICANCE: Bioactive glasses have evolved into a wide range of products used to treat various medical conditions. They are non-equilibrium, non-crystalline materials that have been designed to induce specific biological activity. They can bond to bone and soft tissues and contribute to their regeneration. They are promising in combating pathogens and malignancies by delivering drugs, inorganic therapeutic ions, and heat for magnetic-induced hyperthermia or laser-induced phototherapy. This review addresses each bioactive glass product approved by regulatory agencies for clinical use. A review of the commercialization process is also provided with insight into critical regulatory standards and guidelines for manufacturing. Finally, a critical evaluation of the future of bioactive glass development, applications, and challenges are discussed.


Assuntos
Materiais Biocompatíveis , Alicerces Teciduais , Materiais Biocompatíveis/química , Alicerces Teciduais/química , Osso e Ossos , Vidro/química , Cálcio
3.
J Air Waste Manag Assoc ; 69(12): 1479-1489, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31657669

RESUMO

Estimates of radiation exposure are developed over the life cycle of beneficial use in cement of an alumina production residue (APR) waste pile. The life cycle includes radiation exposures that might be experienced by industrial workers involved in excavation and transport of the residue to cement plants, industrial workers at the cement plants, construction workers making use of the cement, members of the public who might be in the proximity of the cement products, and disposal of the cement at the end of its useful life. The results indicate that it is not reasonably likely for exposures related to beneficial use of APR waste in cement to exceed the acceptance criteria delineated in current radiation protection standards for workers and members of the general public.Implications: Radiation exposure estimates developed over the life cycle of beneficial use in cement of an alumina production residue (APR) waste pile indicate that it is not reasonably likely for exposures to exceed the acceptance criteria delineated in current radiation protection standards for workers and the public. Assumed APR waste characteristics, storage, transport, cement production, uses in concrete, and ultimate disposal are generalizable to many APR situations. The findings demonstrate that beneficial use of APR waste as a cement ingredient can be accomplished safely, with potentially significant benefits to management of the large volume of APR being stored around the world.


Assuntos
Óxido de Alumínio/química , Materiais de Construção , Exposição à Radiação , Humanos , Indústrias , Exposição Ocupacional
4.
J Am Chem Soc ; 127(44): 15350-1, 2005 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-16262381

RESUMO

This paper describes G-protein-coupled receptor (GPCR) microarrays on porous glass substrates and functional assays based on the binding of a europium-labeled GTP analogue. The porous glass slides were made by casting a glass frit on impermeable glass slides and then coating with gamma-aminopropyl silane (GAPS). The emitted fluorescence was captured on an imager with a time-gated intensified CCD detector. Microarrays of the neurotensin receptor 1, the cholinergic receptor muscarinic 2, the opioid receptor mu, and the cannabinoid receptor 1 were fabricated by pin printing. The selective agonism of each of the receptors was observed. The screening of potential antagonists was demonstrated using a cocktail of agonists. The amount of activation observed was sufficient to permit determinations of EC50 and IC50. Such microarrays could potentially streamline drug discovery by helping integrate primary screening with selectivity and safety screening without compromising the essential functional information obtainable from cellular assays.


Assuntos
Análise Serial de Proteínas/métodos , Receptores Acoplados a Proteínas G/antagonistas & inibidores , Avaliação Pré-Clínica de Medicamentos/métodos , Corantes Fluorescentes , Ligantes , Análise Serial de Proteínas/instrumentação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA