Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Métodos Terapêuticos e Terapias MTCI
Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Sci Rep ; 8(1): 9628, 2018 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-29941966

RESUMO

Brown adipose tissue (BAT) undergoes pronounced changes after birth coincident with the loss of the BAT-specific uncoupling protein (UCP)1 and rapid fat growth. The extent to which this adaptation may vary between anatomical locations remains unknown, or whether the process is sensitive to maternal dietary supplementation. We, therefore, conducted a data mining based study on the major fat depots (i.e. epicardial, perirenal, sternal (which possess UCP1 at 7 days), subcutaneous and omental) (that do not possess UCP1) of young sheep during the first month of life. Initially we determined what effect adding 3% canola oil to the maternal diet has on mitochondrial protein abundance in those depots which possessed UCP1. This demonstrated that maternal dietary supplementation delayed the loss of mitochondrial proteins, with the amount of cytochrome C actually being increased. Using machine learning algorithms followed by weighted gene co-expression network analysis, we demonstrated that each depot could be segregated into a unique and concise set of modules containing co-expressed genes involved in adipose function. Finally using lipidomic analysis following the maternal dietary intervention, we confirmed the perirenal depot to be most responsive. These insights point at new research avenues for examining interventions to modulate fat development in early life.


Assuntos
Tecido Adiposo Marrom/crescimento & desenvolvimento , Tecido Adiposo Marrom/metabolismo , Tecido Adiposo Branco/crescimento & desenvolvimento , Tecido Adiposo Branco/metabolismo , Suplementos Nutricionais , Mães , Transcrição Gênica/efeitos dos fármacos , Tecido Adiposo Marrom/efeitos dos fármacos , Tecido Adiposo Branco/efeitos dos fármacos , Animais , Mineração de Dados , Feminino , Redes Reguladoras de Genes/efeitos dos fármacos , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Família Multigênica/genética , Ovinos
2.
PLoS One ; 10(7): e0132090, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26186436

RESUMO

Interest in mRNA methylation has exploded in recent years. The sudden interest in a 40 year old discovery was due in part to the finding of FTO's (Fat Mass Obesity) N6-methyl-adenosine (m6A) deaminase activity, thus suggesting a link between obesity-associated diseases and the presence of m6A in mRNA. Another catalyst of the sudden rise in mRNA methylation research was the release of mRNA methylomes for human, mouse and Saccharomyces cerevisiae. However, the molecular function, or functions of this mRNA 'epimark' remain to be discovered. There is supportive evidence that m6A could be a mark for mRNA degradation due to its binding to YTH domain proteins, and consequently being chaperoned to P bodies. Nonetheless, only a subpopulation of the methylome was found binding to YTHDF2 in HeLa cells.The model organism Saccharomyces cerevisiae, has only one YTH domain protein (Pho92, Mrb1), which targets PHO4 transcripts for degradation under phosphate starvation. However, mRNA methylation is only found under meiosis inducing conditions, and PHO4 transcripts are apparently non-methylated. In this paper we set out to investigate if m6A could function alternatively to being a degradation mark in S. cerevisiae; we also sought to test whether it can be induced under non-standard sporulation conditions. We find a positive association between the presence of m6A and message translatability. We also find m6A induction following prolonged rapamycin treatment.


Assuntos
Meiose/efeitos dos fármacos , Biossíntese de Proteínas/efeitos dos fármacos , Ribossomos/metabolismo , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/genética , Sirolimo/farmacologia , Análise por Conglomerados , Técnicas de Inativação de Genes , Células HeLa , Humanos , Metilação/efeitos dos fármacos , Fenótipo , Polirribossomos/efeitos dos fármacos , Polirribossomos/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ribossomos/efeitos dos fármacos , Saccharomyces cerevisiae/efeitos dos fármacos , Esporos Fúngicos/efeitos dos fármacos , Esporos Fúngicos/fisiologia
3.
J Agric Food Chem ; 54(20): 7466-70, 2006 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-17002409

RESUMO

Coffee is one of the most important world food commodities, commercial trade consisting almost entirely of Arabica and Robusta varieties. The former is considered to be of superior quality and thus attracts a premium price. Methods to differentiate these coffee species could prove to be beneficial for the detection of either deliberate or accidental adulteration. This study describes a molecular genetics approach to differentiate Arabica and Robusta coffee beans. This employs a Polymerase Chain Reaction-Restriction Fragment Length Polymorphism to monitor a single nucleotide polymorphism within the chloroplastic genome. Samples were analyzed with a lab-on-a-chip capillary electrophoresis system. Coffee powder mixtures were analyzed with this technique, displaying a 5% limit of detection. The plastid copy number was found to be relatively constant across a wide range of bean samples, suggesting that this methodology can also be employed for the quantification of any adulteration of Arabica with Robusta beans.


Assuntos
Café/classificação , Café/genética , DNA de Plantas/análise , Eletroforese Capilar , Reação em Cadeia da Polimerase , Polimorfismo de Fragmento de Restrição , Cloroplastos/genética , Contaminação de Alimentos/análise , Polimorfismo de Nucleotídeo Único
4.
Plant Physiol ; 132(2): 578-96, 2003 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-12805589

RESUMO

Our aim was to generate and prove the concept of "smart" plants to monitor plant phosphorus (P) status in Arabidopsis. Smart plants can be genetically engineered by transformation with a construct containing the promoter of a gene up-regulated specifically by P starvation in an accessible tissue upstream of a marker gene such as beta-glucuronidase (GUS). First, using microarrays, we identified genes whose expression changed more than 2.5-fold in shoots of plants growing hydroponically when P, but not N or K, was withheld from the nutrient solution. The transient changes in gene expression occurring immediately (4 h) after P withdrawal were highly variable, and many nonspecific, shock-induced genes were up-regulated during this period. However, two common putative cis-regulatory elements (a PHO-like element and a TATA box-like element) were present significantly more often in the promoters of genes whose expression increased 4 h after the withdrawal of P compared with their general occurrence in the promoters of all genes represented on the microarray. Surprisingly, the expression of only four genes differed between shoots of P-starved and -replete plants 28 h after P was withdrawn. This lull in differential gene expression preceded the differential expression of a new group of 61 genes 100 h after withdrawing P. A literature survey indicated that the expression of many of these "late" genes responded specifically to P starvation. Shoots had reduced P after 100 h, but growth was unaffected. The expression of SQD1, a gene involved in the synthesis of sulfolipids, responded specifically to P starvation and was increased 100 h after withdrawing P. Leaves of Arabidopsis bearing a SQD1::GUS construct showed increased GUS activity after P withdrawal, which was detectable before P starvation limited growth. Hence, smart plants can monitor plant P status. Transferring this technology to crops would allow precision management of P fertilization, thereby maintaining yields while reducing costs, conserving natural resources, and preventing pollution.


Assuntos
Arabidopsis/crescimento & desenvolvimento , Arabidopsis/genética , Regulação da Expressão Gênica de Plantas , Fosfatos/metabolismo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Sequência de Bases , Primers do DNA , DNA Complementar/genética , Marcadores Genéticos , Glucuronidase/genética , Brotos de Planta/metabolismo , Reação em Cadeia da Polimerase/métodos , Oligoelementos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA