RESUMO
BACKGROUND: The severe late stage Human African Trypanosomiasis (HAT) caused by Trypanosoma brucei rhodesiense (T.b.r) is characterized by damage to the blood brain barrier, severe brain inflammation, oxidative stress and organ damage. Melarsoprol (MelB) is currently the only treatment available for this disease. MelB use is limited by its lethal neurotoxicity due to post-treatment reactive encephalopathy. This study sought to assess the potential of Ginkgo biloba (GB), a potent anti-inflammatory and antioxidant, to protect the integrity of the blood brain barrier and ameliorate detrimental inflammatory and oxidative events due to T.b.r in mice treated with MelB. METHODOLOGY: Group one constituted the control; group two was infected with T.b.r; group three was infected with T.b.r and treated with 2.2 mg/kg melarsoprol for 10 days; group four was infected with T.b.r and administered with GB 80 mg/kg for 30 days; group five was given GB 80mg/kg for two weeks before infection with T.b.r, and continued thereafter and group six was infected with T.b.r, administered with GB and treated with MelB. RESULTS: Co-administration of MelB and GB improved the survival rate of infected mice. When administered separately, MelB and GB protected the integrity of the blood brain barrier and improved neurological function in infected mice. Furthermore, the administration of MelB and GB prevented T.b.r-induced microcytic hypochromic anaemia and thrombocytopenia, as well as T.b.r-driven downregulation of total WBCs. Glutathione analysis showed that co-administration of MelB and GB prevented T.b.r-induced oxidative stress in the brain, spleen, heart and lungs. Notably, GB averted peroxidation and oxidant damage by ameliorating T.b.r and MelB-driven elevation of malondialdehyde (MDA) in the brain, kidney and liver. In fact, the co-administered group for the liver, registered the lowest MDA levels for infected mice. T.b.r-driven elevation of serum TNF-α, IFN-γ, uric acid and urea was abrogated by MelB and GB. Co-administration of MelB and GB was most effective in stabilizing TNFα levels. GB attenuated T.b.r and MelB-driven up-regulation of nitrite. CONCLUSION: Utilization of GB as an adjuvant therapy may ameliorate detrimental effects caused by T.b.r infection and MelB toxicity during late stage HAT.
Assuntos
Ginkgo biloba , Melarsoprol , Estresse Oxidativo , Extratos Vegetais , Trypanosoma brucei rhodesiense , Tripanossomíase Africana , Animais , Camundongos , Tripanossomíase Africana/tratamento farmacológico , Tripanossomíase Africana/parasitologia , Estresse Oxidativo/efeitos dos fármacos , Extratos Vegetais/farmacologia , Ginkgo biloba/química , Trypanosoma brucei rhodesiense/efeitos dos fármacos , Melarsoprol/farmacologia , Masculino , Barreira Hematoencefálica/efeitos dos fármacos , Barreira Hematoencefálica/metabolismo , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/administração & dosagem , Modelos Animais de Doenças , Encéfalo/efeitos dos fármacos , Encéfalo/parasitologia , Encéfalo/metabolismo , Encéfalo/patologia , Antioxidantes/farmacologia , Inflamação/tratamento farmacológicoRESUMO
In Kenya, the D. abyssinica rhizome's decoction is traditionally used to treat urinary tract infections (UTIs), mainly gonorrhea and candidiasis. UTIs are the most severe public health problems that affect over one hundred and fifty million people worldwide annually. They are caused by a wide range of microorganisms where Escherichia coli is known to be the main causative pathogen. Medicinal plants are used in traditional Kenya set up for treatment and most recently as an alternative source of treatment for UTIs due to the increased cost of treatment and many challenges experienced with antibiotic therapy. The current study is designed to investigate the phytochemical composition, acute oral toxicity, and antimicrobial activity of Digitaria abyssinica rhizome extracts against Staphylococcus aureus, Escherichia coli, Neisseria gonorrhea, and Candida albicans. The rhizomes of D. abyssinica were obtained, dried, ground, and extracted using water and organic solvents. The phytochemical assay was carried out using standard phytochemical screening methods. Single-dose toxicity studies were done to determine LD50 while disk diffusion and microbroth dilution techniques were used to determine antimicrobial activity. Results revealed that saponins, phenolics, alkaloids, cardiac glycosides, tannins, flavonoids, steroids, and terpenes were present in the powder, aqueous, methanol, and dichloromethane : methanol extracts. All the extracts had an LD50 of above 2,000 mg/kg of body weight and there was no observation of behavioral changes. Also, the aqueous and methanol extracts revealed antifungal activity against Candida albicans with the lowest average minimum zone of inhibition at MIC of 31.25 mg/ml. The study did not reveal antibacterial activity for any extract against the studied uropathogenic bacteria, Staphylococcus aureus, Escherichia coli, and Neisseria gonorrhoeae. The results from the current study suggested that D. abyssinica rhizome aqueous and methanol extracts have potential antifungal activity against C. albicans, thus validating the folklore of its use to treat candidiasis.
RESUMO
Plant-based medicines have effectively managed several ailments in humans and animals since prehistoric times. However, the pharmacologic efficacy and safety of many plants currently used in traditional medicine have not been explored empirically, which raises serious public health concerns, derailing further research and their integration into the conventional healthcare system. Despite the longstanding ethnomedicinal usage of Yushania alpina shoot extract to treat inflammation, microbial infections, and diarrhoea, among other diseases, there is insufficient scientific data to appraise its toxicity profile and safety. Accordingly, we investigated the subacute toxicity of the aqueous shoot extract of Y. alpina in Sprague Dawley rats (both sexes) for 28 days based on the Organisation for Economic Cooperation and Development guideline 407. In this study, all the experimental rats treated orally with 40 mg/Kg BW, 200 mg/Kg BW, and 1000 mg/Kg BW of the aqueous shoot extract of Y. alpina remained normal, like the control group rats, and did not show any clinical signs of subacute toxicity, and no morbidity or mortality was recorded. Besides, the weekly body weight gains and the haematological and biochemical parameters of experimental rats orally administered with the studied plant extract at the tested doses and in the control group were comparable (P > 0.05). No pathologic alterations in internal organs were observed following necroscopy. Further, the differences in weights of the liver, kidney, and spleen of experimental rats which were subacutely treated with the studied plant extract and the control rats were insignificant (P > 0.05). Moreover, no histopathological changes were observed in tissue sections of the liver, kidney, and spleen obtained from all the experimental rats. Our findings demonstrate that the aqueous shoot extract of Y. alpina may be safe as it does not elicit subacute toxicity in Sprague Dawley rats. Further toxicological and pharmacological studies using other model animals and in clinical setups are encouraged to fully appraise the efficacy and safety of the studied plant extract.
RESUMO
Olea africana is used by some indigenous communities in Kenya to control gastrointestinal worms in animals. Plant-based anthelmintics are gaining popularity globally in the control of gastrointestinal worms in animals. The egg hatch inhibition assay was used to assess the in vitro anthelmintic efficacy of aqueous and ethanol leaf extracts of O. africana against the eggs of mixed gastrointestinal helminths in dogs. Probit regression was used to calculate the concentration of extracts that inhibited egg hatching by 50% (IC50). Albendazole was used as a control. Standard techniques were used to quantify the phytochemicals in the extracts. The aqueous extract had an IC50 of 1.85 mg/mL (1.64-2.10), and the ethanol extract had an IC50 of 0.25 mg/mL (0.23-0.26). Quantitative phytochemical analysis revealed that aqueous and ethanol extracts of O. africana contained alkaloids (19.40 and 61.60%), saponins (24.00 and 6.00%), phenols (0.95 and 1.28 mg/g gallic acid equivalents (GAE)), flavonoids (8.71 and 12.26 mg/g catechin equivalents (CE)), and tannins (67.30 and 76.30 mg/g of tannic acid equivalent (TAE)), respectively. O. africana has dose-dependent anthelmintic effects against mixed gastrointestinal worms in dogs. These findings support the traditional use of Olea africana as a treatment option for gastrointestinal worms in dogs.
RESUMO
Snakebite envenomation (SBE) is a life-threatening global public health problem affecting over 2.7 million persons annually, with a bigger burden lying in the developing world. Despite the successful management of SBE by antivenom therapy in conventional medicine, it is of low efficacy due to the diverse venom composition across snake types, which limits its usefulness. As a result, inhabitants of the sub-Sahara region, where SBE incidence is high, utilise medicinal plants as an alternative remedy for SBE. However, most plants have not been ethnobotanically documented and validated empirically and hence this study is needed. An ethnobotanical survey to document medicinal plants used to manage SBE in Migwani ward, Mwingi West Subcounty, Kitui County, was conducted between January and February, 2021. Ethnobotanical data were collected from 45 purposefully sampled respondents from Migwani ward using semistructured questionnaires, field walks, and oral interviews. In this study, 14 medicinal plants which are used to manage SBE were documented. Four plants with the highest Relative Frequency of Citation (RFC) (Entada leptostachya Harms-stem bark (0.58), Senna singueana-roots (0.53), Securidaca longipendunculata-roots (0.36), and Strychnos henningsii-stem bark (0.46)) were selected and extracted using water, methanol, and dichloromethane according to the standard procedures. Qualitative phytochemical analysis of the plant extracts and their cytotoxic effects on brine shrimp nauplii (brine shrimp lethality assay) was conducted according to the standard techniques. Qualitative phytochemical screening revealed the presence of anti-SBE-associated phytochemicals, such as alkaloids, saponins, tannins, phenols, and flavonoids, in the aqueous and methanolic extracts of the studied plant extracts. However, the tested phytochemicals were not detected in dichloromethane extracts of all the studied extracts. The anti-SBE effects of the documented plants could be attributable to these associated bioactive phytocompounds, which are synthesized by the studied plants and transfered to humans when consumed. Furthermore, the aqueous and methanolic extracts of Entada leptostachya and Senna singueana had high LC50 of >1000 µg/ml and were considered noncytotoxic. However, Securidaca longipendunculata had an LC50 of <1000 µg/ml and was considered slightly cytotoxic. Further empirical investigations to characterise the bioactive phytochemicals and their safety should be done.
RESUMO
BACKGROUND: Poor access to healthcare in rural communities causes many people to seek herbalists who use medicinal plants for the treatment of various disease conditions. Most knowledge of traditional herbal medicine makes use of indigenous remedies which are often undocumented and are at risk of being lost. The preservation of this knowledge may facilitate scientific inquiry into promising new therapeutic molecules. METHODS: Semi-structured questionnaires were used to collect the sociodemographic information of 30 herbalists in Kisumu East Sub County. The local names of medicinal plants used in managing illnesses of the respiratory system, their habit, active parts, indications, methods of preparation, routes of administration, scientific identity, and conservation status were also recorded. Other reported traditional uses, pharmacological activities, and toxicological data were identified via a literature search. RESULTS: Most herbalists were female (86.7%), aged between 61 and 70 years (43.3%) with no formal education (56.7%), and had 21-30 years of practice (30%). 44 plant species, belonging to 43 genera and 28 families were identified. Leguminosae and Rutaceae plant families were predominant, leaves were frequently used (33%), and trees were the most common habit (44.4%). Most plants were collected in the wild (79.2%), preparation was mainly by decoction (68.8%), and the administration was mainly orally. The main indication was cough and 79.5% of all documented plant species had previously been reported to have a pharmacological activity relevant to the mitigation of respiratory illnesses. Toxicological data was available for 84.1% of the plant species identified. CONCLUSIONS: The predominant use of roots, root barks, and root tubers by herbalists in Kisumu East Sub County threatens to negatively impact the ecological survival of some plant species. The preservation of herbalists' knowledge of medicinal plants in the study area is a pressing concern considering their advanced age and little formal education. There is a need to conserve some of the medicinal plants documented in this study. The medicinal claims made by herbalists also warrant scientific scrutiny.
RESUMO
Complementary and alternative medicine is an integral component of primary healthcare in Kenya. This is because the infrastructural health setup in the country is inadequate in catering for all the medical needs of the population. This particularly holds true in the rural areas where many rural folk rely on products of herbal origin to offset their healthcare needs. More often than not these products are an elaborate cacophony of several different substances of biological origin and thus need personnel adept in their preparation. Sadly, due to loopholes in legislation and regulation, quacks have a field day in the practice. Moreover, the process of planting, harvesting, preparation and storage of herbs and related products dictates that a significant number of people will ultimately be involved in the whole process. This is likely to set the stage for manipulation and compromise of the safety, quality and efficacy of these products. This state of affairs appears unabated especially in the context of the current legal and regulatory framework governing herbal medicine use and practice in Kenya. Not only are these laws inadequate, they are shrouded in ambiguity, open to interpretation and the authorities mandated to implement them often end up performing duplicate roles. The aim of this review is to critique the legal and regulatory provisions governing herbal medicine use and practice in Kenya. In conclusion, laws and regulations meant to control herbal medicine use and practice in Kenya are wanting. Clear and definitive legislation on herbal medicine use and practice coupled with effective implementation by mandated institutions will go a long way in inspiring confidence to all stakeholders of herbal medicine.
Assuntos
Medicinas Tradicionais Africanas/normas , Fitoterapia/normas , Preparações de Plantas/uso terapêutico , Terapias Complementares/legislação & jurisprudência , Medicina Herbária/legislação & jurisprudência , Humanos , Quênia , Legislação de Medicamentos , Preparações de Plantas/normas , Plantas Medicinais/químicaRESUMO
Complementary and alternative medicine is an integral component of primary healthcare in Kenya. This is because the infrastructural health setup in the country is inadequate in catering for all the medical needs of the population. This particularly holds true in the rural areas where many rural folk rely on products of herbal origin to offset their healthcare needs. More often than not these products are an elaborate cacophony of several different substances of biological origin and thus need personnel adept in their preparation. Sadly, due to loopholes in legislation and regulation, quacks have a field day in the practice. Moreover, the process of planting, harvesting, preparation and storage of herbs and related products dictates that a significant number of people will ultimately be involved in the whole process. This is likely to set the stage for manipulation and compromise of the safety, quality and efficacy of these products. This state of affairs appears unabated especially in the context of the current legal and regulatory framework governing herbal medicine use and practice in Kenya. Not only are these laws inadequate, they are shrouded in ambiguity, open to interpretation and the authorities mandated to implement them often end up performing duplicate roles. The aim of this review is to critique the legal and regulatory provisions governing herbal medicine use and practice in Kenya. In conclusion, laws and regulations meant to control herbal medicine use and practice in Kenya are wanting. Clear and definitive legislation on herbal medicine use and practice coupled with effective implementation by mandated institutions will go a long way in inspiring confidence to all stakeholders of herbal medicine
Assuntos
Medicina Herbária/economia , Medicina Herbária/legislação & jurisprudência , Medicina Herbária/métodos , Medicina Herbária/organização & administração , QuêniaRESUMO
Complementary and alternative medicine is an integral component of primary healthcare in Kenya. This is because the infrastructural health setup in the country is inadequate in catering for all the medical needs of the population. This particularly holds true in the rural areas where many rural folk rely on products of herbal origin to offset their healthcare needs. More often than not these products are an elaborate cacophony of several different substances of biological origin and thus need personnel adept in their preparation. Sadly, due to loopholes in legislation and regulation, quacks have a field day in the practice. Moreover, the process of planting, harvesting, preparation and storage of herbs and related products dictates that a significant number of people will ultimately be involved in the whole process. This is likely to set the stage for manipulation and compromise of the safety, quality and efficacy of these products. This state of affairs appears unabated especially in the context of the current legal and regulatory framework governing herbal medicine use and practice in Kenya. Not only are these laws inadequate, they are shrouded in ambiguity, open to interpretation and the authorities mandated to implement them often end up performing duplicate roles. The aim of this review is to critique the legal and regulatory provisions governing herbal medicine use and practice in Kenya. In conclusion, laws and regulations meant to control herbal medicine use and practice in Kenya are wanting. Clear and definitive legislation on herbal medicine use and practice coupled with effective implementation by mandated institutions will go a long way in inspiring confidence to all stakeholders of herbal medicine