Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Wiad Lek ; 76(12): 2543-2555, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38290016

RESUMO

Marie Sklodowska-Curie Symposia on Cancer Research and Care (MSCS-CRC) promote collaborations between cancer researchers and care providers in the United States, Canada and Central and Eastern European Countries (CEEC), to accelerate the development of new cancer therapies, advance early detection and prevention, increase cancer awareness, and improve cancer care and the quality of life of patients and their families. The third edition of MSCS-CRC, held at Roswell Park Comprehensive Cancer Center, Buffalo, NY, in September 2023, brought together 137 participants from 20 academic institutions in the US, Poland, Ukraine, Lithuania, Croatia and Hungary, together with 16 biotech and pharma entities. The key areas of collaborative opportunity identified during the meeting are a) creating of a database of available collaborative projects in the areas of early-phase clinical trials, preclinical development, and identification of early biomarkers; b) promoting awareness of cancer risks and efforts at cancer prevention; c) laboratory and clinical training; and d) sharing experience in cost-effective delivery of cancer care and improving the quality of life of cancer patients and their families. Examples of ongoing international collaborations in the above areas were discussed. Participation of the representatives of the Warsaw-based Medical Research Agency, National Cancer Institute (NCI) of the United States, National Cancer Research Institutes of Poland and Lithuania, New York State Empire State Development, Ministry of Health of Ukraine and Translational Research Cancer Center Consortium of 13 cancer centers from the US and Canada, facilitated the discussion of available governmental and non-governmental funding initiatives in the above areas.


Assuntos
Pesquisa Biomédica , Neoplasias , Humanos , Estados Unidos , New York , Qualidade de Vida , Neoplasias/terapia , Polônia
2.
Biotechnol Prog ; 37(1): e3069, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32829524

RESUMO

Human in vitro hepatic models generate faster drug toxicity data with higher human predictability compared to animal models. However, for long-term studies, current models require the use of serum and 3D architecture, limiting their utility. Maintaining a functional long-term human in vitro hepatic culture that avoids complex structures and serum would improve the value of such systems for preclinical studies. This would also enable a more straightforward integration with current multi-organ devices to study human systemic toxicity to generate an alternative model to chronic animal evaluations. A human primary hepatocyte culture system was characterized for 28 days in 2D and serum-free defined conditions. Under the studied conditions, human primary hepatocytes maintained their characteristic morphology, hepatic markers and functions for 28 days. The acute and chronic administration of known drugs validated the sensitivity of the system for drug testing. This human 2D model represents a realistic system to evaluate hepatic function for long-term drug studies, without the need of animal serum, confounding variable in most models, and with less complexity and resultant cost compared to most 3D models. The defined culture conditions can easily be integrated into complex multi-organ in vitro models for studying systemic effects driven by the liver function for long-term evaluations.


Assuntos
Antineoplásicos/farmacologia , Meios de Cultura Livres de Soro/farmacologia , Citocromo P-450 CYP1A1/metabolismo , Citocromo P-450 CYP3A/metabolismo , Hepatócitos/efeitos dos fármacos , Avaliação Pré-Clínica de Medicamentos , Hepatócitos/enzimologia , Humanos , Técnicas In Vitro
3.
Biotechnol Bioeng ; 117(3): 736-747, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31758543

RESUMO

In vitro systems that mimic organ functionality have become increasingly important tools in drug development studies. Systems that measure the functional properties of skeletal muscle are beneficial to compound screening studies and also for integration into multiorgan devices. To date, no studies have investigated human skeletal muscle responses to drug treatments at the single myotube level in vitro. This report details a microscale cantilever chip-based assay system for culturing individual human myotubes. The cantilevers, along with a laser and photo-detector system, enable measurement of myotube contractions in response to broad-field electrical stimulation. This system was used to obtain baseline functional parameters for untreated human myotubes, including peak contractile force and time-to-fatigue data. The cultured myotubes were then treated with known myotoxic compounds and the resulting functional changes were compared to baseline measurements as well as known physiological responses in vivo. The collected data demonstrate the system's capacity for screening direct effects of compound action on individual human skeletal myotubes in a reliable, reproducible, and noninvasive manner. Furthermore, it has the potential to be utilized for high-content screening, disease modeling, and exercise studies of human skeletal muscle performance utilizing iPSCs derived from specific patient populations such as the muscular dystrophies.


Assuntos
Avaliação Pré-Clínica de Medicamentos/métodos , Modelos Biológicos , Contração Muscular/efeitos dos fármacos , Músculo Esquelético , Atorvastatina/toxicidade , Células Cultivadas , Doxorrubicina/toxicidade , Humanos , Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , Dispositivos Lab-On-A-Chip , Fibras Musculares Esqueléticas/citologia , Fibras Musculares Esqueléticas/efeitos dos fármacos , Músculo Esquelético/citologia , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/fisiologia , Distrofias Musculares/metabolismo
4.
Sci Transl Med ; 11(497)2019 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-31217335

RESUMO

A pumpless, reconfigurable, multi-organ-on-a-chip system containing recirculating serum-free medium can be used to predict preclinical on-target efficacy, metabolic conversion, and measurement of off-target toxicity of drugs using functional biological microelectromechanical systems. In the first configuration of the system, primary human hepatocytes were cultured with two cancer-derived human bone marrow cell lines for antileukemia drug analysis in which diclofenac and imatinib demonstrated a cytostatic effect on bone marrow cancer proliferation. Liver viability was not affected by imatinib; however, diclofenac reduced liver viability by 30%. The second configuration housed a multidrug-resistant vulva cancer line, a non-multidrug-resistant breast cancer line, primary hepatocytes, and induced pluripotent stem cell-derived cardiomyocytes. Tamoxifen reduced viability of the breast cancer cells only after metabolite generation but did not affect the vulva cancer cells except when coadministered with verapamil, a permeability glycoprotein inhibitor. Both tamoxifen alone and coadministration with verapamil produced off-target cardiac effects as indicated by a reduction of contractile force, beat frequency, and conduction velocity but did not affect viability. These systems demonstrate the utility of a human cell-based in vitro culture system to evaluate both on-target efficacy and off-target toxicity for parent drugs and their metabolites; these systems can augment and reduce the use of animals and increase the efficiency of drug evaluations in preclinical studies.


Assuntos
Antineoplásicos/farmacologia , Avaliação Pré-Clínica de Medicamentos/métodos , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Diclofenaco/farmacologia , Humanos , Mesilato de Imatinib/farmacologia , Dispositivos Lab-On-A-Chip , Tamoxifeno/farmacologia , Verapamil/farmacologia
5.
Biomaterials ; 182: 176-190, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30130706

RESUMO

Regulation of cosmetic testing and poor predictivity of preclinical drug studies has spurred efforts to develop new methods for systemic toxicity. Current in vitro assays do not fully represent physiology, often lacking xenobiotic metabolism. Functional human multi-organ systems containing iPSC derived cardiomyocytes and primary hepatocytes were maintained under flow using a low-volume pumpless system in a serum-free medium. The functional readouts for contractile force and electrical conductivity enabled the non-invasive study of cardiac function. The presence of the hepatocytes in the system induced cardiotoxic effects from cyclophosphamide and reduced them for terfenadine due to drug metabolism, as expected from each compound's pharmacology. A computational fluid dynamics simulation enabled the prediction of terfenadine-fexofenadine pharmacokinetics, which was validated by HPLC-MS. This in vitro platform recapitulates primary aspects of the in vivo crosstalk between heart and liver and enables pharmacological studies, involving both organs in a single in vitro platform. The system enables non-invasive readouts of cardiotoxicity of drugs and their metabolites. Hepatotoxicity can also be evaluated by biomarker analysis and change in metabolic function. Integration of metabolic function in toxicology models can improve adverse effects prediction in preclinical studies and this system could also be used for chronic studies as well.


Assuntos
Ciclofosfamida/toxicidade , Hepatócitos/efeitos dos fármacos , Antagonistas não Sedativos dos Receptores H1 da Histamina/toxicidade , Imunossupressores/toxicidade , Dispositivos Lab-On-A-Chip , Miócitos Cardíacos/efeitos dos fármacos , Terfenadina/toxicidade , Cardiotoxicidade/etiologia , Linhagem Celular , Células Cultivadas , Técnicas de Cocultura/instrumentação , Ciclofosfamida/metabolismo , Avaliação Pré-Clínica de Medicamentos/instrumentação , Desenho de Equipamento , Hepatócitos/citologia , Hepatócitos/metabolismo , Antagonistas não Sedativos dos Receptores H1 da Histamina/metabolismo , Humanos , Imunossupressores/metabolismo , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , Células-Tronco Pluripotentes Induzidas/metabolismo , Miócitos Cardíacos/citologia , Miócitos Cardíacos/metabolismo , Terfenadina/metabolismo
6.
Biomaterials ; 166: 64-78, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29547745

RESUMO

There are currently no functional neuromuscular junction (hNMJ) systems composed of human cells that could be used for drug evaluations or toxicity testing in vitro. These systems are needed to evaluate NMJs for diseases such as amyotrophic lateral sclerosis, spinal muscular atrophy or other neurodegenerative diseases or injury states. There are certainly no model systems, animal or human, that allows for isolated treatment of motoneurons or muscle capable of generating dose response curves to evaluate pharmacological activity of these highly specialized functional units. A system was developed in which human myotubes and motoneurons derived from stem cells were cultured in a serum-free medium in a BioMEMS construct. The system is composed of two chambers linked by microtunnels to enable axonal outgrowth to the muscle chamber that allows separate stimulation of each component and physiological NMJ function and MN stimulated tetanus. The muscle's contractions, induced by motoneuron activation or direct electrical stimulation, were monitored by image subtraction video recording for both frequency and amplitude. Bungarotoxin, BOTOX® and curare dose response curves were generated to demonstrate pharmacological relevance of the phenotypic screening device. This quantifiable functional hNMJ system establishes a platform for generating patient-specific NMJ models by including patient-derived iPSCs.


Assuntos
Relação Dose-Resposta a Droga , Avaliação Pré-Clínica de Medicamentos , Junção Neuromuscular , Engenharia Tecidual , Técnicas de Cocultura , Avaliação Pré-Clínica de Medicamentos/métodos , Estimulação Elétrica , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Neurônios Motores/citologia , Contração Muscular , Fibras Musculares Esqueléticas/citologia
7.
Exp Biol Med (Maywood) ; 242(17): 1701-1713, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-29065797

RESUMO

Integrated multi-organ microphysiological systems are an evolving tool for preclinical evaluation of the potential toxicity and efficacy of drug candidates. Such systems, also known as Body-on-a-Chip devices, have a great potential to increase the successful conversion of drug candidates entering clinical trials into approved drugs. Systems, to be attractive for commercial adoption, need to be inexpensive, easy to operate, and give reproducible results. Further, the ability to measure functional responses, such as electrical activity, force generation, and barrier integrity of organ surrogates, enhances the ability to monitor response to drugs. The ability to operate a system for significant periods of time (up to 28 d) will provide potential to estimate chronic as well as acute responses of the human body. Here we review progress towards a self-contained low-cost microphysiological system with functional measurements of physiological responses. Impact statement Multi-organ microphysiological systems are promising devices to improve the drug development process. The development of a pumpless system represents the ability to build multi-organ systems that are of low cost, high reliability, and self-contained. These features, coupled with the ability to measure electrical and mechanical response in addition to chemical or metabolic changes, provides an attractive system for incorporation into the drug development process. This will be the most complete review of the pumpless platform with recirculation yet written.


Assuntos
Técnicas de Cultura de Células/métodos , Avaliação Pré-Clínica de Medicamentos/métodos , Dispositivos Lab-On-A-Chip , Procedimentos Analíticos em Microchip/métodos , Modelos Biológicos , Humanos
8.
Biomaterials ; 60: 20-30, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25978005

RESUMO

This article details the construction and testing of a phenotypic assay system that models in vivo cardiac function in a parallel in vitro environment with human stem cell derived cardiomyocytes. The major determinants of human whole-heart function were experimentally modeled by integrating separate 2D cellular systems with BioMicroelectromechanical Systems (BioMEMS) constructs. The model features a serum-free defined medium to enable both acute and chronic evaluation of drugs and toxins. The integration of data from both systems produced biologically relevant predictions of cardiac function in response to varying concentrations of selected drugs. Sotalol, norepinephrine and verapamil were shown to affect the measured parameters according to their specific mechanism of action, in agreement with clinical data. This system is applicable for cardiac side effect assessment, general toxicology, efficacy studies, and evaluation of in vitro cellular disease models in body-on-a-chip systems.


Assuntos
Técnicas de Cultura de Células/instrumentação , Avaliação Pré-Clínica de Medicamentos/instrumentação , Coração/efeitos dos fármacos , Sistemas Microeletromecânicos/instrumentação , Miócitos Cardíacos/efeitos dos fármacos , Células Cultivadas , Desenho de Equipamento , Coração/fisiologia , Humanos , Microeletrodos , Miócitos Cardíacos/citologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA