Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Support Care Cancer ; 29(11): 6201-6209, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33822240

RESUMO

PURPOSE: Literature supporting the efficacy of complementary and integrative medicine (CIM) alongside radiotherapy is fragmented with varying outcomes and levels of evidence. This review summarizes the available evidence on CIM used with radiotherapy in order to inform clinicians. METHODS: A systematic literature review identified studies on the use of CIM during radiotherapy. Inclusion required the following criteria: the study was interventional, CIM therapy was for human patients with cancer, and CIM therapy was administered concurrently with radiotherapy. Data points of interest were collected from included studies. A subset was identified as high-quality using the Jadad scale. Fisher's exact test was used to assess the association between study results, outcome measured, and type of CIM. RESULTS: Overall, 163 articles met inclusion. Of these, 68 (41.7%) were considered high-quality trials. Articles published per year increased over time (p < 0.01). Frequently identified therapies were biologically based therapies (47.9%), mind-body therapies (23.3%), and alternative medical systems (13.5%). Within the subset of high-quality trials, 60.0% of studies reported a favorable change with CIM while 40.0% reported no change. No studies reported an unfavorable change. Commonly assessed outcome types were patient-reported (41.1%) and provider-reported (21.5%). Rate of favorable change did not differ based on type of CIM (p = 0.90) or outcome measured (p = 0.24). CONCLUSIONS: Concurrent CIM may reduce radiotherapy-induced toxicities and improve quality of life, suggesting that physicians should discuss CIM with patients receiving radiotherapy. This review provides a broad overview of investigations on CIM use during radiotherapy and can inform how radiation oncologists advise their patients about CIM.


Assuntos
Terapias Complementares , Medicina Integrativa , Humanos , Manejo da Dor , Qualidade de Vida , Autocuidado
2.
Radiology ; 286(1): 149-157, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-28825892

RESUMO

Purpose To assess for nanopore formation in bone marrow cells after irreversible electroporation (IRE) and to evaluate the antitumoral effect of IRE, used alone or in combination with doxorubicin (DOX)-loaded superparamagnetic iron oxide (SPIO) nanoparticles (SPIO-DOX), in a VX2 rabbit tibial tumor model. Materials and Methods All experiments were approved by the institutional animal care and use committee. Five porcine vertebral bodies in one pig underwent intervention (IRE electrode placement without ablation [n = 1], nanoparticle injection only [n = 1], and nanoparticle injection followed by IRE [n = 3]). The animal was euthanized and the vertebrae were harvested and evaluated with scanning electron microscopy. Twelve rabbit VX2 tibial tumors were treated, three with IRE, three with SPIO-DOX, and six with SPIO-DOX plus IRE; five rabbit VX2 tibial tumors were untreated (control group). Dynamic T2*-weighted 4.7-T magnetic resonance (MR) images were obtained 9 days after inoculation and 2 hours and 5 days after treatment. Antitumor effect was expressed as the tumor growth ratio at T2*-weighted MR imaging and percentage necrosis at histologic examination. Mixed-effects linear models were used to analyze the data. Results Scanning electron microscopy demonstrated nanopores in bone marrow cells only after IRE (P , .01). Average volume of total tumor before treatment (503.1 mm3 ± 204.6) was not significantly different from those after treatment (P = .7). SPIO-DOX was identified as a reduction in signal intensity within the tumor on T2*-weighted images for up to 5 days after treatment and was related to the presence of iron. Average tumor growth ratios were 103.0% ± 75.8 with control treatment, 154.3% ± 79.7 with SPIO-DOX, 77% ± 30.8 with IRE, and -38.5% ± 24.8 with a combination of SPIO-DOX and IRE (P = .02). The percentage residual viable tumor in bone was significantly less for combination therapy compared with control (P = .02), SPIO-DOX (P , .001), and IRE (P = .03) treatment. The percentage residual viable tumor in soft tissue was significantly less with IRE (P = .005) and SPIO-DOX plus IRE (P = .005) than with SPIO-DOX. Conclusion IRE can induce nanopore formation in bone marrow cells. Tibial VX2 tumors treated with a combination of SPIO-DOX and IRE demonstrate enhanced antitumor effect as compared with individual treatments alone. © RSNA, 2017 Online supplemental material is available for this article.


Assuntos
Células da Medula Óssea/efeitos dos fármacos , Neoplasias Ósseas/diagnóstico , Neoplasias Ósseas/secundário , Eletroporação/métodos , Nanopartículas de Magnetita/química , Modelos Biológicos , Nanoporos , Animais , Antibióticos Antineoplásicos/farmacologia , Doxorrubicina/farmacologia , Coelhos , Suínos , Tíbia/citologia
3.
Mol Cancer Ther ; 16(6): 1114-1123, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28265009

RESUMO

To address the need for efficient and biocompatible delivery systems for systemic siRNA delivery, we developed 1,2-Dioleoyl-sn-Glycero-3-Phosphatidylcholine (DOPC) nanoliposomal EphA2-targeted therapeutic (EPHARNA). Here, we performed safety studies of EPHARNA in murine and primate models. Single dosing of EPHARNA was tested at 5 concentrations in mice (N = 15 per group) and groups were sacrificed on days 1, 14, and 28 for evaluation of clinical pathology and organ toxicity. Multiple dosing of EPHARNA was tested in mice and Rhesus macaques twice weekly at two dose levels in each model. Possible effects on hematologic parameters, serum chemistry, coagulation, and organ toxicity were assessed. Following single-dose EPHARNA administration to mice, no gross pathologic or dose-related microscopic findings were observed in either the acute (24 hours) or recovery (14 and 28 days) phases. The no-observed-adverse-effect level (NOAEL) for EPHARNA is considered >225 µg/kg when administered as a single injection intravenously in CD-1 mice. With twice weekly injection, EPHARNA appeared to stimulate a mild to moderate inflammatory response in a dose-related fashion. There appeared to be a mild hemolytic reaction in the female mice. In Rhesus macaques, minimal to moderate infiltration of mononuclear cells was found in some organs including the gastrointestinal tract, heart, and kidney. No differences attributed to EPHARNA were observed. These results demonstrate that EPHARNA is well tolerated at all doses tested. These data, combined with previously published in vivo validation studies, have led to an ongoing first-in-human phase I clinical trial (NCT01591356). Mol Cancer Ther; 16(6); 1114-23. ©2017 AACR.


Assuntos
Lipossomos , Nanopartículas , Fosfatidilcolinas , Interferência de RNA , RNA Interferente Pequeno/genética , Receptor EphA2/genética , Animais , Biomarcadores , Avaliação Pré-Clínica de Medicamentos , Feminino , Humanos , Macaca mulatta , Masculino , Camundongos , RNA Interferente Pequeno/administração & dosagem , RNA Interferente Pequeno/efeitos adversos , RNA Interferente Pequeno/farmacocinética , Distribuição Tecidual
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA