Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Nurse Res ; 32(1): 36-42, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38152019

RESUMO

BACKGROUND: Clinical research nurses and midwives (CRN/Ms) are highly specialised registered nurses. They combine their clinical nursing expertise with research knowledge and skills to aid in the delivery of rigorous, high-quality clinical research to improve health outcomes, the research participant's experience and treatment pathways ( Beer et al 2022 ). However, there is evidence that the transition into a CRN/M role is challenging for registered nurses. AIM: To discuss the development of a competency framework for CRN/Ms. DISCUSSION: The authors identified a gap in their organisation for standards that would support the development of CRN/Ms new to the role. The standards needed to be clear and accessible to use while encompassing the breadth of scope of CRN/Ms' practice. The authors used a systematic and inclusive process drawing on Benner's ( 1984 ) theory of competence development to develop a suitable framework. Stakeholders engaged in its development included research participants, inclusion agents and CRN/Ms. CONCLUSION: The project identified 15 elements that are core to the CRN/M role and the knowledge, skills and behaviours associated with it. IMPLICATIONS FOR PRACTICE: A large NHS trust has implemented the framework. It is also being shown to national and regional networks. Evaluation is under way.


Assuntos
Tocologia , Enfermeiras e Enfermeiros , Humanos , Gravidez , Feminino , Competência Clínica
2.
J Ginseng Res ; 47(2): 265-273, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36926616

RESUMO

Background: The intestinal microbiota is an important regulator of bone health. In previous studies we have shown that intestinal microbiota dysbiosis, induced by treatment with broad spectrum antibiotics (ABX) followed by natural repopulation, results in gut barrier dysfunction and bone loss. We have also shown that treatment with probiotics or a gut barrier enhancer can inhibit dysbiosis-induced bone loss. The overall goal of this project was to test the effect of Korean Red Ginseng (KRG) extract on bone and gut health using antibiotics (ABX) dysbiosis-induced bone loss model in mice. Methods: Adult male mice (Balb/C, 12-week old) were administered broad spectrum antibiotics (ampicillin and neomycin) for 2 weeks followed by 4 weeks of natural repopulation. During this 4-week period, mice were treated with vehicle (water) or KRG extract. Other controls included mice that did not receive either antibiotics or KRG extract and mice that received only KRG extract. At the end of the experiments, we assessed various parameters to assess bone, microbiota and in vivo intestinal permeability. Results: Consistent with our previous results, post-ABX- dysbiosis led to significant bone loss. Importantly, this was associated with a decrease in gut microbiota alpha diversity and an increase in intestinal permeability. All these effects including bone loss were prevented by KRG extract treatment. Furthermore, our studies identified multiple genera including Lactobacillus and rc4-4 as well as Alistipes finegoldii to be potentially linked to the effect of KRG extract on gut-bone axis. Conclusion: Together, our results demonstrate that KRG extract regulates the gut-bone axis and is effective at preventing dysbiosis-induced bone loss in mice.

3.
Front Immunol ; 13: 972108, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36341330

RESUMO

Autoimmune diseases can be triggered by environmental toxicants such as crystalline silica dust (cSiO2). Here, we characterized the dose-dependent immunomodulation and toxicity of the glucocorticoid (GC) prednisone in a preclinical model that emulates onset and progression of cSiO2-triggered lupus. Two cohorts of 6-wk-old female NZBWF1 mice were fed either control AIN-93G diet or one of three AIN-93G diets containing prednisone at 5, 15, or 50 mg/kg diet which span human equivalent oral doses (HED) currently considered to be low (PL; 5 mg/d HED), moderate (PM; 14 mg/d HED), or high (PH; 46 mg/d HED), respectively. At 8 wk of age, mice were intranasally instilled with either saline vehicle or 1 mg cSiO2 once weekly for 4 wk. The experimental plan was to 1) terminate one cohort of mice (n=8/group) 14 wk after the last cSiO2 instillation for pathology and autoimmunity assessment and 2) to maintain a second cohort (n=9/group) to monitor glomerulonephritis development and survival. Mean blood concentrations of prednisone's principal active metabolite, prednisolone, in mice fed PL, PM, and PH diets were 27, 105, 151 ng/ml, respectively, which are consistent with levels observed in human blood ≤ 12 h after single bolus treatments with equivalent prednisone doses. Results from the first cohort revealed that consumption of PM, but not PL diet, significantly reduced cSiO2-induced pulmonary ectopic lymphoid structure formation, nuclear-specific AAb production, inflammation/autoimmune gene expression in the lung and kidney, splenomegaly, and glomerulonephritis in the kidney. Relative to GC-associated toxicity, PM diet, but not PL diet, elicited muscle wasting, but these diets did not affect bone density or cause glucosuria. Importantly, neither PM nor PL diet improved latency of cSiO2-accelerated death. PH-fed mice in both cohorts displayed robust GC-associated toxicity including body weight loss, reduced muscle mass, and extensive glucosuria 7 wk after the final cSiO2 instillation requiring their early removal from the study. Taken together, our results demonstrate that while moderate doses of prednisone can reduce important pathological endpoints of cSiO2-induced autoimmunity in lupus-prone mice, such as upstream ectopic lymphoid structure formation, these ameliorative effects come with unwanted GC toxicity, and, crucially, none of these three doses extended survival time.


Assuntos
Doenças Autoimunes , Glomerulonefrite , Humanos , Camundongos , Feminino , Animais , Recém-Nascido , Autoimunidade , Prednisona/farmacologia , Glucocorticoides/farmacologia , Modelos Animais de Doenças , Dióxido de Silício/efeitos adversos , Doenças Autoimunes/induzido quimicamente
4.
Proc Natl Acad Sci U S A ; 118(20)2021 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-33972435

RESUMO

During the second and third trimesters of human gestation, rapid neurodevelopment is underpinned by fundamental processes including neuronal migration, cellular organization, cortical layering, and myelination. In this time, white matter growth and maturation lay the foundation for an efficient network of structural connections. Detailed knowledge about this developmental trajectory in the healthy human fetal brain is limited, in part, due to the inherent challenges of acquiring high-quality MRI data from this population. Here, we use state-of-the-art high-resolution multishell motion-corrected diffusion-weighted MRI (dMRI), collected as part of the developing Human Connectome Project (dHCP), to characterize the in utero maturation of white matter microstructure in 113 fetuses aged 22 to 37 wk gestation. We define five major white matter bundles and characterize their microstructural features using both traditional diffusion tensor and multishell multitissue models. We found unique maturational trends in thalamocortical fibers compared with association tracts and identified different maturational trends within specific sections of the corpus callosum. While linear maturational increases in fractional anisotropy were seen in the splenium of the corpus callosum, complex nonlinear trends were seen in the majority of other white matter tracts, with an initial decrease in fractional anisotropy in early gestation followed by a later increase. The latter is of particular interest as it differs markedly from the trends previously described in ex utero preterm infants, suggesting that this normative fetal data can provide significant insights into the abnormalities in connectivity which underlie the neurodevelopmental impairments associated with preterm birth.


Assuntos
Córtex Cerebral/fisiologia , Corpo Caloso/fisiologia , Desenvolvimento Fetal/fisiologia , Tálamo/fisiologia , Substância Branca/fisiologia , Anisotropia , Córtex Cerebral/anatomia & histologia , Córtex Cerebral/diagnóstico por imagem , Conectoma , Corpo Caloso/anatomia & histologia , Corpo Caloso/diagnóstico por imagem , Imagem de Tensor de Difusão , Feminino , Feto , Idade Gestacional , Humanos , Lactente , Recém-Nascido , Neurogênese/fisiologia , Neurônios/citologia , Neurônios/fisiologia , Gravidez , Segundo Trimestre da Gravidez , Terceiro Trimestre da Gravidez , Tálamo/anatomia & histologia , Tálamo/diagnóstico por imagem , Útero/diagnóstico por imagem , Útero/fisiologia , Substância Branca/anatomia & histologia , Substância Branca/diagnóstico por imagem
5.
Int J Psychophysiol ; 158: 380-388, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33171138

RESUMO

BACKGROUND: Neurofeedback training aims to develop awareness and control of psychological states in order to self-regulate brain activity and while used widely therapeutically, important questions remain unanswered. Central to these aims is an assumed association between the live EEG-based feedback and the subjective experience of a psychological state. To date, there is little evidence to support this relationship. Previous studies examining the association between an EEG index and subjective experience have explored only the presence or absence of the state, or merely assumed state variations. The current study aims to examine this association by considering how different levels of a psychological state (i.e., attention) are reflected in EEG coherence. METHODS: Our approach aims to allow comparisons of EEG coherence between psychological states (attention vs. rest), and also within subjectively-rated levels of a psychological state (attention) through a purpose-designed questionnaire. Thirty healthy adult participants performed a resting eyes-open (REO) and attention modulation task, while 28 channels of EEG were recorded. Levels within the psychological state were subjectively-attested by participants on a trial-by-trial basis. RESULTS: The main analyses examined the effect of subjectively-rated attention levels (SRALs) on EEG coherence, with results suggesting that high and low SRALs may be represented by: 1) different levels of alpha and theta coherence at anterior and posterior electrodes of the frontal lobe bilaterally, and 2) different levels of alpha coherence between central and parietal lobes, also bilaterally. DISCUSSION: These findings provide partial, preliminary evidence for EEG correlates of SRALs. These findings may have implications for understanding underlying mechanisms of NFT, which is an underdeveloped area.


Assuntos
Transtorno do Deficit de Atenção com Hiperatividade , Neurorretroalimentação , Adulto , Eletroencefalografia , Lobo Frontal , Humanos , Descanso
6.
J Bone Miner Res ; 35(4): 801-820, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31886921

RESUMO

Glucocorticoids (GCs) are potent immune-modulating drugs with significant side effects, including glucocorticoid-induced osteoporosis (GIO). GCs directly induce osteoblast and osteocyte apoptosis but also alter intestinal microbiota composition. Although the gut microbiota is known to contribute to the regulation of bone density, its role in GIO has never been examined. To test this, male C57/Bl6J mice were treated for 8 weeks with GC (prednisolone, GC-Tx) in the presence or absence of broad-spectrum antibiotic treatment (ABX) to deplete the microbiota. Long-term ABX prevented GC-Tx-induced trabecular bone loss, showing the requirement of gut microbiota for GIO. Treatment of GC-Tx mice with a probiotic (Lactobacillus reuteri [LR]) prevented trabecular bone loss. Microbiota analyses indicated that GC-Tx changed the abundance of Verrucomicobiales and Bacteriodales phyla and random forest analyses indicated significant differences in abundance of Porphyromonadaceae and Clostridiales operational taxonomic units (OTUs) between groups. Furthermore, transplantation of GC-Tx mouse fecal material into recipient naïve, untreated WT mice caused bone loss, supporting a functional role for microbiota in GIO. We also report that GC caused intestinal barrier breaks, as evidenced by increased serum endotoxin level (2.4-fold), that were prevented by LR and ABX treatments. Enhancement of barrier function with a mucus supplement prevented both GC-Tx-induced barrier leakage and trabecular GIO. In bone, treatment with ABX, LR or a mucus supplement reduced GC-Tx-induced osteoblast and osteocyte apoptosis. GC-Tx suppression of Wnt10b in bone was restored by the LR and high-molecular-weight polymer (MDY) treatments as well as microbiota depletion. Finally, we identified that bone-specific Wnt10b overexpression prevented GIO. Taken together, our data highlight the previously unappreciated involvement of the gut microbiota and intestinal barrier function in trabecular GIO pathogenesis (including Wnt10b suppression and osteoblast and osteocyte apoptosis) and identify the gut as a novel therapeutic target for preventing GIO. © 2019 American Society for Bone and Mineral Research.


Assuntos
Microbioma Gastrointestinal , Osteoporose , Animais , Densidade Óssea , Glucocorticoides/toxicidade , Masculino , Camundongos , Osteoblastos , Osteoporose/induzido quimicamente , Osteoporose/tratamento farmacológico
7.
J Bone Miner Res ; 34(4): 681-698, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30690795

RESUMO

Antibiotic treatment, commonly prescribed for bacterial infections, depletes and subsequently causes long-term alterations in intestinal microbiota composition. Knowing the importance of the microbiome in the regulation of bone density, we investigated the effect of postantibiotic treatment on gut and bone health. Intestinal microbiome repopulation at 4-weeks postantibiotic treatment resulted in an increase in the Firmicutes:Bacteroidetes ratio, increased intestinal permeability, and notably reduced femoral trabecular bone volume (approximately 30%, p < 0.01). Treatment with a mucus supplement (a high-molecular-weight polymer, MDY-1001 [MDY]) prevented the postantibiotic-induced barrier break as well as bone loss, indicating a mechanistic link between increased intestinal permeability and bone loss. A link between the microbiome composition and bone density was demonstrated by supplementing the mice with probiotic bacteria. Specifically, Lactobacillus reuteri, but not Lactobacillus rhamnosus GG or nonpathogenic Escherichia coli, reduced the postantibiotic elevation of the Firmicutes:Bacteroidetes ratio and prevented femoral and vertebral trabecular bone loss. Consistent with causing bone loss, postantibiotic-induced dysbiosis decreased osteoblast and increased osteoclast activities, changes that were prevented by both L. reuteri and MDY. These data underscore the importance of microbial dysbiosis in the regulation of intestinal permeability and bone health, as well as identify L. reuteri and MDY as novel therapies for preventing these adverse effects. © 2018 American Society for Bone and Mineral Research.


Assuntos
Antibacterianos/efeitos adversos , Reabsorção Óssea , Disbiose , Microbioma Gastrointestinal/efeitos dos fármacos , Limosilactobacillus reuteri , Probióticos/farmacologia , Animais , Antibacterianos/farmacologia , Bacteroides/classificação , Bacteroides/crescimento & desenvolvimento , Reabsorção Óssea/induzido quimicamente , Reabsorção Óssea/microbiologia , Reabsorção Óssea/patologia , Reabsorção Óssea/prevenção & controle , Disbiose/induzido quimicamente , Disbiose/microbiologia , Disbiose/prevenção & controle , Firmicutes/classificação , Firmicutes/crescimento & desenvolvimento , Masculino , Camundongos , Camundongos Endogâmicos BALB C
8.
Front Physiol ; 9: 384, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29706903

RESUMO

As a consequence of rapid growth, broiler chickens are more susceptible to infection as well as bone fractures that result in birds being culled. Intestinal infection/inflammation has been demonstrated to promote bone loss in mice and humans. Given this link, we hypothesize that therapeutics that target the gut can benefit bone health. To test this, we infected broiler chickens (7 days old) with Salmonella and treated the birds with or without MDY, a non-absorbable mucus supplement known to benefit intestinal health, from day 1-21 or from day 14-21. Chicken femoral trabecular and cortical bone parameters were analyzed by microcomputed tomography at 21 days. Birds infected with Salmonella displayed significant trabecular bone loss and bone microarchitecture abnormalities that were specific to the femoral neck region, a common site of fracture in chickens. Histological analyses of the chicken bone indicated an increase in osteoclast surface/bone surface in this area indicating that infection-induced bone resorption likely causes the bone loss. Of great interest, treatment with MDY effectively prevented broiler chicken bone loss and architectural changes when given chronically throughout the experiment or for only a week after infection. The latter suggests that MDY may not only prevent bone loss but reverse bone loss. MDY also increased cortical bone mineral density in Salmonella-treated chickens. Taken together, our studies demonstrate that Salmonella-induced bone loss in broiler chickens is prevented by oral MDY.

9.
Microbiol Spectr ; 5(4)2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28840819

RESUMO

Osteoporosis, characterized by low bone mass and micro-architectural deterioration of bone tissue with increased risk of fracture, can be categorized into two forms: primary and secondary, depending on whether it occurs as part of the natural aging process (estrogen deficiency) or as part of disease pathology. In both forms bone loss is due to an imbalance in the bone remodeling process, with resorption/formation skewed more toward bone loss. Recent studies and emerging evidence consistently demonstrate the potential of the intestinal microbiota to modulate bone health. This review discusses the process of bone remodeling and the pathology of osteoporosis and introduces the intestinal microbiota and its potential to influence bone health. In particular, we highlight recent murine studies that examine how probiotic supplementation can both increase bone density in healthy individuals and protect against primary (estrogen deficiency) as well as secondary osteoporosis. Potential mechanisms are described to account for how probiotic treatments could be exerting their beneficial effect on bone health.


Assuntos
Remodelação Óssea/fisiologia , Transplante de Microbiota Fecal/métodos , Fraturas Ósseas/prevenção & controle , Osteoporose/terapia , Probióticos/uso terapêutico , Animais , Densidade Óssea , Osso e Ossos , Modelos Animais de Doenças , Feminino , Microbioma Gastrointestinal , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Osteoporose/patologia , Osteoporose/prevenção & controle
10.
PLoS One ; 11(4): e0153180, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27058036

RESUMO

BACKGROUND & AIMS: We previously demonstrated that short-term oral administration of the probiotic Lactobacillus reuteri 6475 enhanced bone density in male but not female mice. We also established that L. reuteri 6475 enhanced bone health and prevented bone loss in estrogen-deficient female mice. In this study, we tested whether a mild inflammatory state and/or a long-term treatment with the probiotic was required to promote a positive bone effect in estrogen-sufficient female mice. METHODS: A mild inflammatory state was induced in female mice by dorsal surgical incision (DSI). Following DSI animals were orally supplemented with L. reuteri or vehicle control for a period of 8 weeks. Gene expression was measured in the intestine and bone marrow by qPCR. Distal femoral bone density and architecture was analyzed by micro-CT. RESULTS: We report that 8 weeks after DSI there is a significant increase in the weight of spleen, thymus and visceral (retroperitoneal) fat pads. Expression of intestinal cytokines and tight junction proteins are also altered 8 weeks post-DSI. Interestingly, L. reuteri treatment was found to display both intestinal region- and inflammation-dependent effects. Unexpectedly we identified that 1) L. reuteri treatment increased bone density in females but only in those that underwent DSI and 2) DSI benefited cortical bone parameters. In the bone marrow, dorsal surgery induced CD4+ T cell numbers, a response that was unaffected by L. reuteri treatment, whereas expression of RANKL, OPG and IL-10 were significantly affected by L. reuteri treatment. CONCLUSION: Our data reveals a previously unappreciated effect of a mild surgical procedure causing a long-lasting effect on inflammatory gene expression in the gut and the bone. Additionally, we demonstrate that in intact female mice, the beneficial effect of L. reuteri on bone requires an elevated inflammatory status.


Assuntos
Densidade Óssea , Inflamação/terapia , Limosilactobacillus reuteri/fisiologia , Probióticos/uso terapêutico , Animais , Células da Medula Óssea/imunologia , Células da Medula Óssea/metabolismo , Remodelação Óssea/fisiologia , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/metabolismo , Citocinas/genética , Estrogênios/metabolismo , Feminino , Expressão Gênica , Inflamação/genética , Inflamação/metabolismo , Mucosa Intestinal/metabolismo , Intestinos/imunologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Probióticos/administração & dosagem , Microtomografia por Raio-X
11.
J Cell Physiol ; 227(4): 1326-34, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21604269

RESUMO

Type 1 diabetic osteoporosis results from impaired osteoblast activity and death. Therefore, anti-resorptive treatments may not effectively treat bone loss in this patient population. Intermittent parathyroid hormone (PTH) treatment stimulates bone remodeling and increases bone density in healthy subjects. However, PTH effects may be limited in patients with diseases that interfere with its signaling. Here, we examined the ability of 8 and 40 µg/kg intermittent PTH to counteract diabetic bone loss. PTH treatment reduced fat pad mass and blood glucose levels in non-diabetic PTH-treated mice, consistent with PTH-affecting glucose homeostasis. However, PTH treatment did not significantly affect general body parameters, including the blood glucose levels, of type 1 diabetic mice. We found that the high dose of PTH significantly increased tibial trabecular bone density parameters in control and diabetic mice, and the lower dose elevated trabecular bone parameters in diabetic mice. The increased bone density was due to increased mineral apposition and osteoblast surface, all of which are defective in type 1 diabetes. PTH treatment suppressed osteoblast apoptosis in diabetic bone, which could further contribute to the bone-enhancing effects. In addition, PTH treatment (40 µg/kg) reversed preexisting bone loss from diabetes. We conclude that intermittent PTH may increase type 1 diabetic trabecular bone volume through its anabolic effects on osteoblasts.


Assuntos
Complicações do Diabetes/tratamento farmacológico , Diabetes Mellitus Tipo 1/tratamento farmacológico , Osteoblastos/efeitos dos fármacos , Osteoporose/tratamento farmacológico , Hormônio Paratireóideo/farmacologia , Fosfatase Ácida/genética , Animais , Densidade Óssea/efeitos dos fármacos , Remodelação Óssea/efeitos dos fármacos , Reabsorção Óssea/tratamento farmacológico , Reabsorção Óssea/genética , Sobrevivência Celular/efeitos dos fármacos , Complicações do Diabetes/metabolismo , Complicações do Diabetes/patologia , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/patologia , Diabetes Mellitus Tipo 1/metabolismo , Diabetes Mellitus Tipo 1/patologia , Humanos , Isoenzimas/genética , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Osteoblastos/patologia , Osteogênese/efeitos dos fármacos , Osteoporose/etiologia , Osteoporose/metabolismo , Osteoporose/patologia , Hormônio Paratireóideo/administração & dosagem , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Fosfatase Ácida Resistente a Tartarato
12.
Biol Proced Online ; 11: 296-315, 2009 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-19495918

RESUMO

As many as 50% of adults with type I (T1) diabetes exhibit bone loss and are at increased risk for fractures. Therapeutic development to prevent bone loss and/or restore lost bone in T1 diabetic patients requires knowledge of the molecular mechanisms accounting for the bone pathology. Because cell culture models alone cannot fully address the systemic/metabolic complexity of T1 diabetes, animal models are critical. A variety of models exist including spontaneous and pharmacologically induced T1 diabetic rodents. In this paper, we discuss the streptozotocin (STZ)-induced T1 diabetic mouse model and examine dose-dependent effects on disease severity and bone. Five daily injections of either 40 or 60 mg/kg STZ induce bone pathologies similar to spontaneously diabetic mouse and rat models and to human T1 diabetic bone pathology. Specifically, bone volume, mineral apposition rate, and osteocalcin serum and tibia messenger RNA levels are decreased. In contrast, bone marrow adiposity and aP2 expression are increased with either dose. However, high-dose STZ caused a more rapid elevation of blood glucose levels and a greater magnitude of change in body mass, fat pad mass, and bone gene expression (osteocalcin, aP2). An increase in cathepsin K and in the ratio of RANKL/OPG was noted in high-dose STZ mice, suggesting the possibility that severe diabetes could increase osteoclast activity, something not seen with lower doses. This may contribute to some of the disparity between existing studies regarding the role of osteoclasts in diabetic bone pathology. Examination of kidney and liver toxicity indicate that the high STZ dose causes some liver inflammation. In summary, the multiple low-dose STZ mouse model exhibits a similar bone phenotype to spontaneous models, has low toxicity, and serves as a useful tool for examining mechanisms of T1 diabetic bone loss.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA