Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 117(27): 15443-15449, 2020 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-32571905

RESUMO

The assassination of Julius Caesar in 44 BCE triggered a power struggle that ultimately ended the Roman Republic and, eventually, the Ptolemaic Kingdom, leading to the rise of the Roman Empire. Climate proxies and written documents indicate that this struggle occurred during a period of unusually inclement weather, famine, and disease in the Mediterranean region; historians have previously speculated that a large volcanic eruption of unknown origin was the most likely cause. Here we show using well-dated volcanic fallout records in six Arctic ice cores that one of the largest volcanic eruptions of the past 2,500 y occurred in early 43 BCE, with distinct geochemistry of tephra deposited during the event identifying the Okmok volcano in Alaska as the source. Climate proxy records show that 43 and 42 BCE were among the coldest years of recent millennia in the Northern Hemisphere at the start of one of the coldest decades. Earth system modeling suggests that radiative forcing from this massive, high-latitude eruption led to pronounced changes in hydroclimate, including seasonal temperatures in specific Mediterranean regions as much as 7 °C below normal during the 2 y period following the eruption and unusually wet conditions. While it is difficult to establish direct causal linkages to thinly documented historical events, the wet and very cold conditions from this massive eruption on the opposite side of Earth probably resulted in crop failures, famine, and disease, exacerbating social unrest and contributing to political realignments throughout the Mediterranean region at this critical juncture of Western civilization.


Assuntos
Mudança Climática/história , Clima Frio/efeitos adversos , Desastres/história , Mundo Romano/história , Erupções Vulcânicas/efeitos adversos , Alaska , Clima , Produtos Agrícolas/história , Fome Epidêmica/história , História Antiga , Camada de Gelo , Região do Mediterrâneo , Política , Erupções Vulcânicas/história
2.
Proc Natl Acad Sci U S A ; 115(22): 5726-5731, 2018 05 29.
Artigo em Inglês | MEDLINE | ID: mdl-29760088

RESUMO

Lead pollution in Arctic ice reflects midlatitude emissions from ancient lead-silver mining and smelting. The few reported measurements have been extrapolated to infer the performance of ancient economies, including comparisons of economic productivity and growth during the Roman Republican and Imperial periods. These studies were based on sparse sampling and inaccurate dating, limiting understanding of trends and specific linkages. Here we show, using a precisely dated record of estimated lead emissions between 1100 BCE and 800 CE derived from subannually resolved measurements in Greenland ice and detailed atmospheric transport modeling, that annual European lead emissions closely varied with historical events, including imperial expansion, wars, and major plagues. Emissions rose coeval with Phoenician expansion, accelerated during expanded Carthaginian and Roman mining primarily in the Iberian Peninsula, and reached a maximum under the Roman Empire. Emissions fluctuated synchronously with wars and political instability particularly during the Roman Republic, and plunged coincident with two major plagues in the second and third centuries, remaining low for >500 years. Bullion in silver coinage declined in parallel, reflecting the importance of lead-silver mining in ancient economies. Our results indicate sustained economic growth during the first two centuries of the Roman Empire, terminated by the second-century Antonine plague.


Assuntos
Poluentes Ambientais , Gelo/análise , Chumbo , Mundo Romano/história , Conflitos Armados/história , Surtos de Doenças/história , Poluentes Ambientais/análise , Poluentes Ambientais/história , Indústrias Extrativas e de Processamento/história , Groenlândia , História Antiga , Humanos , Chumbo/análise , Chumbo/história , Prata/história
3.
Nature ; 514(7524): 616-9, 2014 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-25355363

RESUMO

Global climate and the concentration of atmospheric carbon dioxide (CO2) are correlated over recent glacial cycles. The combination of processes responsible for a rise in atmospheric CO2 at the last glacial termination (23,000 to 9,000 years ago), however, remains uncertain. Establishing the timing and rate of CO2 changes in the past provides critical insight into the mechanisms that influence the carbon cycle and helps put present and future anthropogenic emissions in context. Here we present CO2 and methane (CH4) records of the last deglaciation from a new high-accumulation West Antarctic ice core with unprecedented temporal resolution and precise chronology. We show that although low-frequency CO2 variations parallel changes in Antarctic temperature, abrupt CO2 changes occur that have a clear relationship with abrupt climate changes in the Northern Hemisphere. A significant proportion of the direct radiative forcing associated with the rise in atmospheric CO2 occurred in three sudden steps, each of 10 to 15 parts per million. Every step took place in less than two centuries and was followed by no notable change in atmospheric CO2 for about 1,000 to 1,500 years. Slow, millennial-scale ventilation of Southern Ocean CO2-rich, deep-ocean water masses is thought to have been fundamental to the rise in atmospheric CO2 associated with the glacial termination, given the strong covariance of CO2 levels and Antarctic temperatures. Our data establish a contribution from an abrupt, centennial-scale mode of CO2 variability that is not directly related to Antarctic temperature. We suggest that processes operating on centennial timescales, probably involving the Atlantic meridional overturning circulation, seem to be influencing global carbon-cycle dynamics and are at present not widely considered in Earth system models.


Assuntos
Ciclo do Carbono , Regiões Antárticas , Atmosfera/química , Dióxido de Carbono/análise , Efeito Estufa , Groenlândia , História Antiga , Camada de Gelo , Isótopos , Metano/análise , Oceanos e Mares , Água/análise , Água/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA