Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Investig Dermatol Symp Proc ; 18(2): S81-S84, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28941500

RESUMO

Elevated levels of prostaglandin D2 (PGD2) have been shown to be present in the bald scalp of androgenic alopecia (AGA) patients and to functionally inhibit hair growth. However, its precise mechanism in AGA has yet to be clearly defined. Although testosterone plays a critical role in the initiation and progression of AGA, the existence of a possible link between PGD2 and testosterone in skin has not been investigated. Here we show that human keratinocytes treated with PGD2 show enhanced capacity to convert the weak androgen, androstenedione, to testosterone. At the same time, treatment with PGD2 induced reactive oxygen species as indicated by generation of the lipid peroxidation product, 4-hydroxynonenal. To determine whether these two events are linked, we used the reactive oxygen species scavenger N-acetyl-cysteine, which blocked the enhanced testosterone production from PGD2-treated keratinocytes. Our study suggests the existence of a possible crosstalk between the PGD2-reactive oxygen species axis and testosterone metabolism in keratinocytes. Thus, we propose that AGA patients might benefit from the use of N-acetyl-cysteine or other antioxidants as a supplement to currently available or emerging AGA therapies such as finasteride, minoxidil, and PGD2 receptor blockers.


Assuntos
Androstenodiona/metabolismo , Queratinócitos/metabolismo , Prostaglandina D2/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Testosterona/biossíntese , Acetilcisteína/farmacologia , Aldeídos/metabolismo , Alopecia , Células Cultivadas , Sequestradores de Radicais Livres/farmacologia , Humanos , Transdução de Sinais
2.
Clin Cancer Res ; 15(23): 7238-45, 2009 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-19920105

RESUMO

PURPOSE: Discovery of agents that protect or mitigate normal tissue from radiation injury during radiotherapy, accidents, or terrorist attacks is of importance. Specifically, bone marrow insufficiency, with possible infection due to immunosuppression, can occur after total body irradiation (TBI) or regional irradiation and is a major component of the acute radiation syndrome. The purpose of this study was to identify novel radioprotectors and mitigators of the hematopoietic system. EXPERIMENTAL DESIGN: High-throughput screening of small-molecule libraries was done using viability of a murine lymphocyte line as a readout with further validation in human lymphoblastoid cells. The selected compounds were then tested for their ability to counter TBI lethality in mice. RESULTS: All of two major classes of antibiotics, tetracyclines and fluoroquinolones, which share a common planar ring moiety, were radioprotective. Furthermore, tetracycline protected murine hematopoietic stem/progenitor cell populations from radiation damage and allowed 87.5% of mice to survive when given before and 35% when given 24 h after lethal TBI. Interestingly, tetracycline did not alter the radiosensitivity of Lewis lung cancer cells. Tetracycline and ciprofloxacine also protected human lymphoblastoid cells, reducing radiation-induced DNA double-strand breaks by 33% and 21%, respectively. The effects of these agents on radiation lethality are not due to the classic mechanism of free radical scavenging but potentially through activation of the Tip60 histone acetyltransferase and altered chromatin structure. CONCLUSIONS: Tetracyclines and fluoroquinolones can be robust radioprotectors and mitigators of the hematopoietic system with potential utility in anticancer radiotherapy and radiation emergencies.


Assuntos
Antibacterianos/farmacologia , Fluoroquinolonas/farmacologia , Protetores contra Radiação/farmacologia , Tetraciclinas/farmacologia , Animais , Células da Medula Óssea/citologia , Carcinoma Pulmonar de Lewis/terapia , Sobrevivência Celular , Avaliação Pré-Clínica de Medicamentos , Humanos , Imunossupressores/farmacologia , Linfócitos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C3H , Fatores de Tempo , Irradiação Corporal Total
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA