Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Eur J Appl Physiol ; 122(8): 1949-1964, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35674828

RESUMO

PURPOSE: To compare physiological responses to submaximal cycling and sprint cycling performance in women using oral contraceptives (WomenOC) and naturally cycling women (WomenNC) and to determine whether N-acetylcysteine (NAC) supplementation mediates these responses. METHODS: Twenty recreationally trained women completed five exercise trials (i.e., an incremental cycling test, a familiarisation trial, a baseline performance trial and two double-blind crossover intervention trials). During the intervention trials participants supplemented with NAC or a placebo 1 h before exercise. Cardiopulmonary parameters and blood biochemistry were assessed during 40 min of fixed-intensity cycling at 105% of gas-exchange threshold and after 1-km cycling time-trial. RESULTS: WomenOC had higher ventilation (ß [95% CI] = 0.07 L·min-1 [0.01, 0.14]), malondialdehydes (ß = 12.00 mmol·L-1 [6.82, 17.17]) and C-reactive protein (1.53 mg·L-1 [0.76, 2.30]), whereas glutathione peroxidase was lower (ß =  22.62 mU·mL-1 [- 41.32, - 3.91]) compared to WomenNC during fixed-intensity cycling. Plasma thiols were higher at all timepoints after NAC ingestion compared to placebo, irrespective of group (all p < 0.001; d = 1.45 to 2.34). For WomenNC but not WomenOC, the exercise-induced increase in malondialdehyde observed in the placebo trial was blunted after NAC ingestion, with lower values at 40 min (p = 0.018; d = 0.73). NAC did not affect cycling time-trial performance. CONCLUSIONS: Blood biomarkers relating to oxidative stress and inflammation are elevated in WomenOC during exercise. There may be an increased strain on the endogenous antioxidant system during exercise, since NAC supplementation in WomenOC did not dampen the exercise-induced increase in malondialdehyde. Future investigations should explore the impact of elevated oxidative stress on exercise adaptations or recovery from exercise in WomenOC.


Assuntos
Acetilcisteína , Estresse Oxidativo , Acetilcisteína/farmacologia , Biomarcadores , Anticoncepção , Anticoncepcionais Orais/farmacologia , Estudos Cross-Over , Método Duplo-Cego , Feminino , Humanos , Malondialdeído
2.
J Nutr ; 152(3): 714-722, 2022 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-34625812

RESUMO

BACKGROUND: Many women enter pregnancy with iron stores that are insufficient to maintain maternal iron balance and support fetal development and consequently, often require iron supplements. However, the side effects associated with many currently available iron supplements can limit compliance. OBJECTIVE: This study aimed to test the safety and efficacy of a novel nanoparticulate iron supplement, a dietary ferritin analog termed iron hydroxide adipate tartrate (IHAT), in pregnant mice. METHODS: Female C57BL/6 mice were maintained on either an iron-deficient or a control diet for 2 wk prior to timed mating to develop iron-deficient or iron-sufficient pregnancy models, respectively. Mice from each model were then gavaged daily with 10 mg iron/kg body weight as either IHAT or ferrous sulfate, or with water only, beginning on embryonic day (E) 4.5. Mice were killed on E18.5 and maternal iron and hematological parameters were measured. The expression of genes encoding iron transporters and oxidative stress markers in the duodenum and placenta were determined, along with hepatic expression of the gene encoding the iron regulatory hormone hepcidin and fetal iron. RESULTS: Oral IHAT and ferrous sulfate were equally effective at increasing maternal hemoglobin (20.2% and 16.9%, respectively) and hepatic iron (30.2% and 29.3%, respectively), as well as total fetal iron (99.7% and 83.8%, respectively), in iron-deficient pregnant mice compared with those gavaged with water only, with no change in oxidative stress markers seen with either treatment. However, there was a significant increase in the placental expression of the oxidative stress marker heme oxygenase 1 in iron-replete pregnant mice treated with ferrous sulfate when compared with iron-replete pregnant mice gavaged with IHAT (96.9%, P <0.05). CONCLUSIONS: IHAT has proved a safe and effective alternative to oral ferrous sulfate in mice, and it has potential for treating iron deficiency in human pregnancy.


Assuntos
Anemia Ferropriva , Deficiências de Ferro , Anemia Ferropriva/tratamento farmacológico , Animais , Feminino , Ferritinas/uso terapêutico , Compostos Ferrosos/uso terapêutico , Hemoglobinas/análise , Humanos , Ferro , Camundongos , Camundongos Endogâmicos C57BL , Placenta/química , Gravidez , Água
3.
J Endocrinol ; 248(1): 45-57, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33112790

RESUMO

Thyroid disorders are the most common endocrine disorders affecting women commencing pregnancy. Thyroid hormone metabolism is strongly influenced by selenium status; however, the relationship between serum selenium concentrations and thyroid hormones in euthyroid pregnant women is unknown. This study investigated the relationship between maternal selenium and thyroid hormone status during pregnancy by utilizing data from a retrospective, cross-sectional study (Maternal Outcomes and Nutrition Tool or MONT study) with cohorts from two tertiary care hospitals in South East Queensland, Australia. Pregnant women (n = 206) were recruited at 26-30 weeks gestation and serum selenium concentrations were assessed using inductively coupled plasma mass spectrometry. Thyroid function parameters were measured in serum samples from women with the lowest serum selenium concentrations (51.2 ± 1.2 µg/L), women with mean concentrations representative of the entire cohort (78.8 ± 0.4 µg/L) and women with optimal serum selenium concentrations (106.9 ± 2.3 µg/L). Women with low serum selenium concentrations demonstrated reduced fT3 levels (P < 0.05) and increased TPOAb (P < 0.01). Serum selenium was positively correlated with fT3 (P < 0.05) and negatively correlated with TPOAb (P < 0.001). Serum fT4 and thyroid-stimulating hormone (TSH) were not different between all groups, though the fT4/TSH ratio was increased in the low selenium cohort (P < 0.05). Incidence of pregnancy disorders, most notably gestational diabetes mellitus, was increased within the low serum selenium cohort (P < 0.01). These results suggest selenium status in pregnant women of South East Queensland may not be adequate, with possible implications for atypical thyroid function and undesirable pregnancy outcomes.


Assuntos
Diabetes Gestacional/sangue , Selênio/sangue , Tireotropina/sangue , Tiroxina/sangue , Tri-Iodotironina/sangue , Feminino , Humanos , Recém-Nascido , Masculino , Gravidez
4.
Nutrients ; 12(1)2020 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-31968625

RESUMO

Selenium is an essential micronutrient commonly deficient in human populations. Selenium deficiency increases the risks of pregnancy complications; however, the long-term impact of selenium deficiency on offspring disease remains unclear. This study investigates the effects of selenium deficiency during pregnancy on offspring metabolic function. Female C57BL/6 mice were allocated to control (>190 µg selenium/kg, n = 8) or low selenium (<50 µg selenium/kg, n = 8) diets prior to mating and throughout gestation. At postnatal day (PN) 170, mice underwent an intraperitoneal glucose tolerance test and were culled at PN180 for biochemical analysis. Mice exposed to selenium deficiency in utero had reduced fasting blood glucose but increased postprandial blood glucose concentrations. Male offspring from selenium-deficient litters had increased plasma insulin levels in conjunction with reduced plasma thyroxine (tetraiodothyronine or T4) concentrations. Conversely, females exposed to selenium deficiency in utero exhibited increased plasma thyroxine levels with no change in plasma insulin. This study demonstrates the importance of adequate selenium intake around pregnancy for offspring metabolic health. Given the increasing prevalence of metabolic disease, this study highlights the need for appropriate micronutrient intake during pregnancy to ensure a healthy start to life.


Assuntos
Glicemia/metabolismo , Deficiências Nutricionais/metabolismo , Selênio/deficiência , Glândula Tireoide/metabolismo , Hormônios Tireóideos/sangue , Fenômenos Fisiológicos da Nutrição Animal , Animais , Biomarcadores/sangue , Deficiências Nutricionais/sangue , Deficiências Nutricionais/fisiopatologia , Modelos Animais de Doenças , Feminino , Masculino , Fenômenos Fisiológicos da Nutrição Materna , Camundongos Endogâmicos C57BL , Gravidez , Efeitos Tardios da Exposição Pré-Natal , Caracteres Sexuais , Glândula Tireoide/fisiopatologia , Fatores de Tempo
5.
Nutr Metab Insights ; 12: 1178638819879444, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31632052

RESUMO

Micronutrient supplements are often recommended during pregnancy, yet their role and necessity remain poorly understood in the Australian population. This study aimed to determine the essential mineral intake of a population of pregnant women in South East Queensland and investigate the effects of supplements on their micronutrient status and birth outcomes. Women completing the Oral Glucose Tolerance Test at two South East Queensland hospitals between 180 and 210 days gestation provided fasting blood samples and dietary data using the Maternal Outcomes and Nutrition Tool (n = 127). Birth outcomes were sourced from medical records. Serum elemental profiles were determined by inductively coupled plasma mass spectrometry (ICP-MS) analysis. Intake of 8 essential minerals was compared with Australian dietary recommendations; matched serum mineral levels were compared with the current Queensland pregnancy reference ranges. Data were examined using cross-sectional cohort design and independent sample t-tests. Supplement use had no significant influence on serum values of trace elements or the incidence of hypertensive disorders, gestational diabetes, preterm birth or infant birthweight. Dietary selenium, zinc and iodine were significantly higher in women birthing beyond 41 completed weeks; selenium (P = .026) and zinc (P = .034) both made unique contributions to the regression models when controlling for confounders. Women exhibited adequate to excessive serum micronutrient levels compared with pregnancy reference ranges, a finding consistent with dietary intake calculations. Data suggest that excessive essential mineral intake contributed to prolonged pregnancy in this cohort, supporting previous studies in this population. Further research is required to determine individual needs and eliminate the potential for harm before recommending pregnancy supplements.

6.
J Physiol ; 597(23): 5597-5617, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31562642

RESUMO

KEY POINTS: Inappropriate intake of key micronutrients in pregnancy is known to alter maternal endocrine status, impair placental development and induce fetal growth restriction. Selenium is an essential micronutrient required for the function of approximately 25 important proteins. However, the specific effects of selenium deficiency during pregnancy on maternal, placental and fetal outcomes are poorly understood. The present study demonstrates that maternal selenium deficiency increases maternal triiodothyronine and tetraiodothyronine concentrations, reduces fetal blood glucose concentrations, and induces fetal growth restriction. Placental expression of key selenium-dependent thyroid hormone converting enzymes were reduced, whereas the expression of key placental nutrient transporters was dysregulated. Selenium deficiency had minimal impact on selenium-dependent anti-oxidants but increased placental copper concentrations and expression of superoxide dismutase 1. These results highlight the idea that selenium deficiency during pregnancy may contribute to thyroid dysfunction, causing reduced fetal growth, that may precede programmed disease outcomes in offspring. ABSTRACT: Selenium is a trace element fundamental to diverse homeostatic processes, including anti-oxidant regulation and thyroid hormone metabolism. Selenium deficiency in pregnancy is common and increases the risk of pregnancy complications including fetal growth restriction. Although altered placental formation may contribute to these poor outcomes, the mechanism by which selenium deficiency contributes to complications in pregnancy is poorly understood. Female C57BL/6 mice were randomly allocated to control (>190 µg kg-1 , n = 8) or low selenium (<50 µg kg-1 , n = 8) diets 4 weeks prior to mating and throughout gestation. Pregnant mice were killed at embryonic day 18.5 followed by collection of maternal and fetal tissue. Maternal and fetal plasma thyroid hormone concentrations were analysed, as was placental expression of key selenoproteins involved in thyroid metabolism and anti-oxidant defences. Selenium deficiency increased plasma tetraiodothyronine and triiodothyronine concentrations. This was associated with a reduction in placental expression of key selenodependent deiodinases, DIO2 and DIO3. Placental expression of selenium-dependent anti-oxidants was unaffected by selenium deficiency. Selenium deficiency reduced fetal glucose concentrations, leading to reduced fetal weight. Placental glycogen content was increased within the placenta, as was Slc2a3 mRNA expression. This is the first study to demonstrate that selenium deficiency may reduce fetal weight through increased maternal thyroid hormone concentrations, impaired placental thyroid hormone metabolism and dysregulated placental nutrient transporter expression. The study suggests that the magnitude of selenium deficiency commonly reported in pregnant women may be sufficient to impair thyroid metabolism but not placental anti-oxidant concentrations.


Assuntos
Desenvolvimento Fetal , Placenta/metabolismo , Selênio/deficiência , Hormônios Tireóideos/metabolismo , Animais , Cobre/metabolismo , Feminino , Iodeto Peroxidase/genética , Fígado/embriologia , Fígado/metabolismo , Masculino , Fenômenos Fisiológicos da Nutrição Materna , Camundongos Endogâmicos C57BL , Gravidez , Iodotironina Desiodinase Tipo II
7.
Clin Exp Pharmacol Physiol ; 45(8): 871-884, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29679395

RESUMO

Poor nutrition during pregnancy is known to impair foetal development and increase the risk of chronic disease in offspring. Both macronutrients and micronutrients are required for a healthy pregnancy although significantly less is understood about the role of micronutrients in the programming of chronic disease. This is despite the fact that modern calorie rich diets are often also deficient in key micronutrients. The importance of micronutrients in gestational disorders is clearly understood but how they impact long term disease in humans requires further investigation. In contrast, animal studies have demonstrated how diets high or low in specific micronutrients influence offspring physiology. Many of these studies highlight the importance of the placenta in determining disease risk. This review will explore the effects of individual vitamins, minerals and trace elements on offspring disease outcomes and discuss several key placental adaptations that are affected by multiple micronutrients. These placental adaptations include micronutrient induced dysregulation of oxidative stress, altered methyl donor availability and its impact on epigenetic mechanisms as well as endocrine dysfunction. Critical gaps in our current knowledge and the relative importance of different micronutrients at different gestational ages will also be highlighted. Finally, this review will discuss the need for further studies to characterise the micronutrient status of Australian women of reproductive age and correlate micronutrient status to placental adaptations, pregnancy complications and offspring disease.


Assuntos
Suplementos Nutricionais , Desenvolvimento Fetal , Micronutrientes , Placenta/metabolismo , Efeitos Tardios da Exposição Pré-Natal/etiologia , Fenômenos Fisiológicos da Nutrição Pré-Natal , Adulto , Animais , Austrália , Doença Crônica , Feminino , Desenvolvimento Fetal/efeitos dos fármacos , Humanos , Micronutrientes/administração & dosagem , Micronutrientes/deficiência , Placenta/efeitos dos fármacos , Gravidez , Resultado da Gravidez , Fenômenos Fisiológicos da Nutrição Pré-Natal/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA