Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Food Sci ; 87(2): 728-737, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35067916

RESUMO

Coffee silverskin is a byproduct of the coffee roasting process contributing to organic waste burdens in urban areas. Silverskin is a potential source of dietary fiber, protein, carbohydrates, caffeine as well as vitamins and minerals. However, phytosterols present in the plant are susceptible to thermal oxidation resulting in the formation of phytosterol oxidation products (POPs) in the silverskin during roasting. In collaboration with a small roastery, the formation of POPs in three coffee varieties with roasting time was monitored by GC-MS. The objective was to evaluate the safety and potential benefits of incorporating coffee silverskin into value-added products. The qualitative profile of POPs in the silverskin from the three varieties was similar. Average total POPs were 0.32 g POPs/kg silverskin. POPs from the dominant plant sterol, sitosterol, were present at the highest concentrations. Caffeine, total antioxidant capacity, and total flavonoids were measured in the silverskin of the three coffees. Average values were 1.3 g caffeine/100 g silverskin, TEAC of 11 mmol Trolox/kg silverskin, and 1.94 to 8.60 mg catechin equivalent (CE)/g silverskin, respectively. An analysis of the impact of consuming teas and baked goods containing silverskin was also performed. Using published formulations, a tea or cookie containing silverskin would contribute approximately 1 and 0.3 mg POP per day, respectively. Consumption of these products would not substantially increase dietary exposure to POPs, while increasing fiber and antioxidants while reducing organic waste. PRACTICAL APPLICATION: Coffee silverskin has been studied as a possible source of fiber, antioxidants, and caffeine when incorporated in snack foods and used to make teas. To assess possible concerns about increasing dietary oxidized phytosterols, the formation of phytosterol oxidation products (POPs) was investigated in the silverskin fraction during the roasting process in three coffee varieties. In addition, caffeine, antioxidant capacity, and total flavonoids were determined. We found that silverskin can be safely used for value-added products including caffeinated teas, cookies, and bars with minimal impact on dietary POP exposures.


Assuntos
Coffea , Fitosteróis , Antioxidantes , Coffea/química , Café , Oxirredução , Fitosteróis/química , Extratos Vegetais
2.
Rapid Commun Mass Spectrom ; 33(1): 133-139, 2019 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-30325552

RESUMO

RATIONALE: Microbial natural products are often biosynthesized as classes of structurally related compounds that have similar tandem mass spectrometry (MS/MS) fragmentation patterns. Mining MS/MS datasets for precursor ions that share diagnostic or common features enables entire chemical classes to be identified, including novel derivatives that have previously been unreported. Analytical data analysis tools that can facilitate a class-targeted approach to rapidly dereplicate known compounds and identify structural variants within complex matrices would be useful for the discovery of new natural products. METHODS: A diagnostic fragmentation filtering (DFF) module was developed for MZmine to enable the efficient screening of MS/MS datasets for class-specific product ions(s) and/or neutral loss(es). This approach was applied to series of the structurally related chaetoglobosin and cytochalasin classes of compounds. These were identified from the culture filtrates of three fungal genera: Chaetomium globosum, a putative new species of Penicillium (called here P. cf. discolor: closely related to P. discolor), and Xylaria sp. Extracts were subjected to LC/MS/MS analysis under positive electrospray ionization and operating in a data-dependent acquisition mode, performed using a Thermo Q-Exactive mass spectrometer. All MS/MS datasets were processed using the DFF module and screened for diagnostic product ions at m/z 130.0648 and 185.0704 for chaetoglobosins, and m/z 120.0808 and 146.0598 for cytochalasins. RESULTS: Extracts of C. globosum and P. cf. discolor strains revealed different mixtures of chaetoglobosins, whereas the Xylaria sp. produced only cytochalasins; none of the strains studied produced both classes of compounds. The dominant chaetoglobosins produced by both C. globosum and P. cf. discolor were chaetoglobosins A, C, and F. Tetrahydrochaetoglobosin A was identified from P. cf. discolor extracts and is reported here for the first time as a natural product. The major cytochalasins produced by the Xylaria sp. were cytochalasin D and epoxy cytochalasin D. A larger unknown "cytochalasin-like" molecule with the molecular formula C38 H47 NO10 was detected from Xylaria sp. culture filtrate extracts and is a current target for isolation and structural characterization. CONCLUSIONS: DFF is an effective LC/MS data analysis approach for rapidly identifying entire classes of compounds from complex mixtures. DFF has proved useful in the identification of new natural products and allowing for their partial characterization without the need for isolation.


Assuntos
Citocalasinas/química , Descoberta de Drogas/métodos , Alcaloides Indólicos/química , Software , Espectrometria de Massas em Tandem/métodos , Chaetomium/química , Chaetomium/metabolismo , Cromatografia Líquida , Citocalasinas/análise , Avaliação Pré-Clínica de Medicamentos/métodos , Fermentação , Alcaloides Indólicos/análise , Metabolômica/métodos , Penicillium/química , Penicillium/metabolismo , Xylariales/química , Xylariales/metabolismo
3.
Phytochemistry ; 117: 436-443, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26189049

RESUMO

Foliar fungal endophytes of Pinus strobus (eastern white pine) were collected from different sites across south-eastern New Brunswick, Canada and screened for the production of bioactive metabolites. From one site, two fungal isolates representing a formerly unknown genus and species within the family Massarinaceae (Pleosporales, Dothideomycetes, Ascomycota) were resolved by phylogenetic analysis. These isolates produced crude organic extracts that were active against Microbotryum violaceum and Saccharomyces cerevisiae. From these strains, DAOM 242779 and 242780, four dihydrobenzofurans (1-4) and two xanthenes (5-6) were characterized. Structures were elucidated by HRMS, interpretation of NMR spectra and other spectroscopic techniques. All isolated metabolites displayed antimicrobial activity against the biotrophic fungal pathogen M. violaceum and Bacillus subtilis.


Assuntos
Anti-Infecciosos/farmacologia , Ascomicetos/química , Benzofuranos/farmacologia , Endófitos/química , Pinus/microbiologia , Xantenos/farmacologia , Anti-Infecciosos/química , Ascomicetos/fisiologia , Benzofuranos/química , Benzofuranos/isolamento & purificação , Avaliação Pré-Clínica de Medicamentos/métodos , Testes de Sensibilidade Microbiana , Novo Brunswick , Folhas de Planta/microbiologia , Metabolismo Secundário , Xantenos/química , Xantenos/isolamento & purificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA