Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Cell Mol Life Sci ; 70(4): 729-42, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23007843

RESUMO

Links between cancer and stem cells have been proposed for many years. As the cancer stem cell (CSC) theory became widely studied, new methods were developed to culture and expand cancer cells with conserved determinants of "stemness". These cells show increased ability to grow in suspension as spheres in serum-free medium supplemented with growth factors and chemicals. The physiological relevance of this phenomenon in established cancer cell lines remains unclear. Cell lines have traditionally been used to explore tumor biology and serve as preclinical models for the screening of potential therapeutic agents. Here, we grew cell-forming spheres (CFS) from 25 established colorectal cancer cell lines. The molecular and cellular characteristics of CFS were compared to the bulk of tumor cells. CFS could be isolated from 72 % of the cell lines. Both CFS and their parental CRC cell lines were highly tumorigenic. Compared to their parental cells, they showed similar expression of putative CSC markers. The ability of CRC cells to grow as CFS was greatly enhanced by prior treatment with 5-fluorouracil. At the molecular level, CFS and parental CRC cells showed identical gene mutations and very similar genomic profiles, although microarray analysis revealed changes in CFS gene expression that were independent of DNA copy-number. We identified a CFS gene expression signature common to CFS from all CRC cell lines, which was predictive of disease relapse in CRC patients. In conclusion, CFS models derived from CRC cell lines possess interesting phenotypic features that may have clinical relevance for drug resistance and disease relapse.


Assuntos
Neoplasias Colorretais/patologia , Esferoides Celulares/patologia , Animais , Antimetabólitos Antineoplásicos/farmacologia , Biomarcadores Tumorais/genética , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Colo/efeitos dos fármacos , Colo/metabolismo , Colo/patologia , Neoplasias Colorretais/diagnóstico , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/genética , Fluoruracila/farmacologia , Regulação Neoplásica da Expressão Gênica , Humanos , Camundongos , Camundongos Nus , Recidiva Local de Neoplasia , Reto/efeitos dos fármacos , Reto/metabolismo , Reto/patologia , Esferoides Celulares/efeitos dos fármacos , Esferoides Celulares/metabolismo , Células Tumorais Cultivadas
2.
Endocrinology ; 149(1): 310-9, 2008 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-17901225

RESUMO

We previously described a colocalization between arginine vasopressin (AVP) and the chemokine stromal cell-derived factor-1alpha (SDF-1) in the magnocellular neurons of both the hypothalamic supraoptic and paraventricular nucleus as well as the posterior pituitary. SDF-1 physiologically affects the electrophysiological properties of AVP neurons and consequently AVP release. In the present study, we confirm by confocal and electron microscopy that AVP and SDF-1 have a similar cellular distribution inside the neuronal cell and can be found in dense core vesicles in the nerve terminals in the posterior pituitary. Because the Brattleboro rats represent a good model of AVP deficiency, we tested in these animals the fate of SDF-1 and its receptor CXCR4. We identified by immunohistochemistry that both SDF-1 and CXCR4 immunoreactivity were strongly decreased in Brattleboro rats and were strictly correlated with the expression of AVP protein in supraoptic nucleus, paraventricular nucleus, and the posterior pituitary. We observed by real-time PCR an increase in SDF-1 mRNA in both heterozygous and homozygous rats. The effect on the SDF-1/CXCR4 system was not linked to peripheral modifications of kidney water balance because it could not be restored by chronic infusion of deamino-8D-ariginine-vasopressin, an AVP V2-receptor agonist. These original data further suggest that SDF-1 may play an essential role in the regulation of water balance.


Assuntos
Quimiocina CXCL12/fisiologia , Sistema Hipotálamo-Hipofisário/fisiologia , Neurônios/metabolismo , Neurônios/fisiologia , Vasopressinas/fisiologia , Animais , Animais Geneticamente Modificados , Água Corporal/metabolismo , Água Corporal/fisiologia , Quimiocina CXCL12/genética , Quimiocina CXCL12/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Homeostase/genética , Homeostase/fisiologia , Sistema Hipotálamo-Hipofisário/efeitos dos fármacos , Sistema Hipotálamo-Hipofisário/metabolismo , Hipotálamo/química , Hipotálamo/metabolismo , Masculino , Neuro-Hipófise/metabolismo , RNA Mensageiro/análise , Ratos , Ratos Brattleboro , Ratos Long-Evans , Receptores CXCR4/genética , Receptores CXCR4/metabolismo , Frações Subcelulares/metabolismo , Distribuição Tecidual , Vasopressinas/metabolismo , Vasopressinas/farmacologia
3.
Proc Natl Acad Sci U S A ; 103(21): 8221-6, 2006 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-16702540

RESUMO

Chemokines play a key role in inflammation. They are expressed not only in neuroinflammatory conditions, but also constitutively by different cell types, including neurons in the normal brain, suggesting that they may act as modulators of neuronal functions. Here, we investigated a possible neuroendocrine role of the chemokine stromal cell-derived factor 1 (SDF-1)/CXCL12. We demonstrated the colocalization of SDF-1 and its receptor CXCR4 with arginine vasopressin (AVP) in the magnocellular neurons of the supraoptic nucleus (SON) and the paraventricular hypothalamic nucleus and on AVP projections to the neurohypophysis. Electrophysiological recordings of SON neurons demonstrated that SDF-1 affects the electrical activity of AVP neurons through CXCR4, resulting in changes in AVP release. We observed that SDF-1 can blunt the autoregulation of AVP release in vitro and counteract angiotensin II-induced plasma AVP release in vivo. Furthermore, a short-term physiological increase in AVP release induced by enhanced plasma osmolarity, which was produced by the administration of 1 M NaCl i.p., was similarly blocked by central injection of SDF-1 through CXCR4. A change in water balance by long-term salt loading induced a decrease in both SDF-1 and CXCR4 parallel to that of AVP immunostaining in SON. From these data, we demonstrate that chemokine actions in the brain are not restricted to inflammatory processes. We propose to add to the known autoregulation of AVP on its own neurons, a second autocrine system induced by SDF-1 able to modulate central AVP neuronal activity and release.


Assuntos
Quimiocinas CXC/metabolismo , Receptores CXCR4/metabolismo , Transmissão Sináptica , Vasopressinas/metabolismo , Potenciais de Ação , Animais , Quimiocina CXCL12 , Eletrofisiologia , Hipotálamo/metabolismo , Inflamação , Masculino , Neurônios/metabolismo , Técnicas de Patch-Clamp , Hipófise/metabolismo , Ratos , Ratos Wistar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA