Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(23)2023 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-38069333

RESUMO

This work aims to clarify the effect of dietary polyunsaturated fatty acid (PUFA) intake on the adult brain affected by amyloid pathology. McGill-R-Thy1-APP transgenic (Tg) rat and 5xFAD Tg mouse models that represent earlier or later disease stages were employed. The animals were exposed to a control diet (CD) or an HFD based on corn oil, from young (rats) or adult (mice) ages for 24 or 10 weeks, respectively. In rats and mice, the HFD impaired reference memory in wild-type (WT) animals but did not worsen it in Tg, did not cause obesity, and did not increase triglycerides or glucose levels. Conversely, the HFD promoted stronger microglial activation in Tg vs. WT rats but had no effect on cerebral amyloid deposition. IFN-γ, IL-1ß, and IL-6 plasma levels were increased in Tg rats, regardless of diet, while CXCL1 chemokine levels were increased in HFD-fed mice, regardless of genotype. Hippocampal 3-nitrotyrosine levels tended to increase in HFD-fed Tg rats but not in mice. Overall, an HFD with an elevated omega-6-to-omega-3 ratio as compared to the CD (25:1 vs. 8.4:1) did not aggravate the outcome of AD regardless of the stage of amyloid pathology, suggesting that many neurobiological processes relevant to AD are not directly dependent on PUFA intake.


Assuntos
Doença de Alzheimer , Ácidos Graxos Ômega-3 , Camundongos , Ratos , Animais , Doença de Alzheimer/genética , Doença de Alzheimer/patologia , Encéfalo/patologia , Camundongos Transgênicos , Amiloide , Modelos Animais de Doenças , Ratos Transgênicos , Dieta Hiperlipídica
2.
Neurobiol Dis ; 187: 106295, 2023 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-37717663

RESUMO

The amyloid cascade hypothesis is widely accepted as an explanation for the neuropathological changes in Alzheimer's disease (AD). However, the role of amyloid-beta (Aß) as the sole cause of these changes is being questioned. Using the 5xFAD mouse model of AD, we investigated various factors contributing to neuropathology, including genetic load (heterozygous (HTZ) versus homozygous (HZ) condition), behavioural phenotype, neuropathology markers, metabolic physiology, and gut microbiota composition at early (5 months of age) and late (12 months of age) stages of disease onset, and considering both sexes. At 5 months of age, both HTZ and HZ mice exhibited hippocampal alterations associated with Aß accumulation, leading to increased neuroinflammation and disrupted PI3K-Akt pathway. However, only HZ mice showed cognitive impairment in the Y-maze and Morris water maze tests, worsening with age. Dysregulation of both insulin and insulin secretion-regulating GIP peptide were observed at 5 months of age, disappearing later. Circulating levels of metabolic-regulating hormones, such as Ghrelin and resisting helped to differentiates HTZ mice from HZ mice. Differences between HTZ and HZ mice were also observed in gut microbiota composition, disrupted intestinal barrier proteins, and increased proinflammatory products in the intestine. These findings suggest that cognitive impairment in 5xFAD mice may not solely result from Aß aggregation. Other factors, including altered PI3K-Akt signalling, disrupted insulin-linked metabolic pathways, and changes in gut microbiota, contribute to disease progression. Targeting Aß deposition alone may not suffice. Understanding AD pathogenesis and its multiple contributing factors is vital for effective therapies.

3.
Nutrients ; 14(21)2022 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-36364913

RESUMO

Ischemic heart disease (IHD) and type-2 diabetes mellitus (T2DM) remain major health problems worldwide and commonly coexist in individuals. Gut microbial metabolites, such as trimethylamine N-oxide (TMAO) and short-chain fatty acids (SCFAs), have been linked to cardiovascular and metabolic diseases. Previous studies have reported dysbiosis in the gut microbiota of these patients and the prebiotic effects of some components of the Mediterranean diet. Essential oil emulsions of savory (Satureja hortensis), parsley (Petroselinum crispum) and rosemary (Rosmarinus officinalis) were assessed as nutraceuticals and prebiotics in IHD and T2DM. Humanized mice harboring gut microbiota derived from that of patients with IHD and T2DM were supplemented with L-carnitine and orally treated with essential oil emulsions for 40 days. We assessed the effects on gut microbiota composition and abundance, microbial metabolites and plasma markers of cardiovascular disease, inflammation and oxidative stress. Our results showed that essential oil emulsions in mice supplemented with L-carnitine have prebiotic effects on beneficial commensal bacteria, mainly Lactobacillus genus. There was a decrease in plasma TMAO and an increase in fecal SCFAs levels in mice treated with parsley and rosemary essential oils. Thrombomodulin levels were increased in mice treated with savory and parsley essential oils. While mice treated with parsley and rosemary essential oils showed a decrease in plasma cytokines (INFÉ£, TNFα, IL-12p70 and IL-22); savory essential oil was associated with increased levels of chemokines (CXCL1, CCL2 and CCL11). Finally, there was a decrease in protein carbonyls and pentosidine according to the essential oil emulsion. These results suggest that changes in the gut microbiota induced by essential oils of parsley, savory and rosemary as prebiotics could differentially regulate cardiovascular and metabolic factors, which highlights the potential of these nutraceuticals for reducing IHD risk in patients affected by T2DM.


Assuntos
Diabetes Mellitus Tipo 2 , Dieta Mediterrânea , Microbioma Gastrointestinal , Isquemia Miocárdica , Óleos Voláteis , Rosmarinus , Camundongos , Animais , Prebióticos , Emulsões/farmacologia , Ácidos Graxos Voláteis/metabolismo , Óleos Voláteis/farmacologia , Carnitina/farmacologia
4.
Biomed Pharmacother ; 150: 112994, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35483188

RESUMO

Increasing evidence shows that hypothalamic dysfunction, insulin resistance, and weight loss precede and progress along with the cognitive decline in sporadic Alzheimer's Disease (AD) with sex differences. This study aimed to determine the effect of oral dietary administration of D-Chiro-inositol (DCI), an inositol used against insulin resistance associated with polycystic ovary, on the occurrence of metabolic disorders in the transgenic 5xFAD mouse model of AD (FAD: Family Alzheimer's Disease). DCI was administered from 6 to 10 months of age to male and female 5xFAD mice and control (non-Tg) littermates. Energy balance and multiple metabolic and inflammatory parameters in the hypothalamus, liver and plasma were evaluated to assess the central and peripheral effects of DCI. Results indicated that weight loss and reduced food intake in 5xFAD mice were associated with decreased neuropeptides controlling food intake and the appearance of a pro-inflammatory state in the hypothalamus. Oral administration of DCI partially restored energy balance and hypothalamic parameters, highlighting an increased expression of Npy and Agrp and female-specific downregulation of Gfap and Igf1. DCI also partially normalized impaired insulin signaling and circulating insulin, GLP-1, and GIP deficiencies in 5xFAD mice. Principal component analysis of metabolic parameters indicated the presence of a female-specific fatty liver in 5xFAD mice: DCI administration reversed hepatic fat accumulation, ß-oxidation, inflammation and increased GOT and GPT levels. Our study depicts that metabolic impairment along with the cognitive decline in a mouse model of AD, which is exacerbated in females, can be ameliorated by oral supplementation with insulin-sensitizing DCI.


Assuntos
Doença de Alzheimer , Resistência à Insulina , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Animais , Modelos Animais de Doenças , Feminino , Humanos , Inositol/farmacologia , Inositol/uso terapêutico , Insulina/metabolismo , Resistência à Insulina/fisiologia , Masculino , Camundongos , Camundongos Transgênicos , Redução de Peso
5.
Nutrients ; 13(7)2021 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-34209137

RESUMO

D-Pinitol (DPIN) is a natural occurring inositol capable of activating the insulin pathway in peripheral tissues, whereas this has not been thoroughly studied in the central nervous system. The present study assessed the potential regulatory effects of DPIN on the hypothalamic insulin signaling pathway. To this end we investigated the Phosphatidylinositol-3-kinase (PI3K)/Protein Kinase B (Akt) signaling cascade in a rat model following oral administration of DPIN. The PI3K/Akt-associated proteins were quantified by Western blot in terms of phosphorylation and total expression. Results indicate that the acute administration of DPIN induced time-dependent phosphorylation of PI3K/Akt and its related substrates within the hypothalamus, indicating an activation of the insulin signaling pathway. This profile is consistent with DPIN as an insulin sensitizer since we also found a decrease in the circulating concentration of this hormone. Overall, the present study shows the pharmacological action of DPIN in the hypothalamus through the PI3K/Akt pathway when giving in fasted animals. These findings suggest that DPIN might be a candidate to treat brain insulin-resistance associated disorders by activating insulin response beyond the insulin receptor.


Assuntos
Hipotálamo/metabolismo , Inositol/análogos & derivados , Fosfatidilinositol 3-Quinase/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais , Administração Oral , Animais , Glicemia/metabolismo , Ativação Enzimática/efeitos dos fármacos , Glucagon/sangue , Homeostase , Hipotálamo/efeitos dos fármacos , Inositol/administração & dosagem , Inositol/sangue , Inositol/química , Inositol/farmacologia , Insulina/sangue , Insulina/metabolismo , Resistência à Insulina , Fator de Crescimento Insulin-Like I/metabolismo , Masculino , Fosforilação/efeitos dos fármacos , Ratos Wistar , Transdução de Sinais/efeitos dos fármacos
6.
Int J Mol Sci ; 22(10)2021 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-34065168

RESUMO

Increasing evidence links metabolic disorders with neurodegenerative processes including Alzheimer's disease (AD). Late AD is associated with amyloid (Aß) plaque accumulation, neuroinflammation, and central insulin resistance. Here, a humanized AD model, the 5xFAD mouse model, was used to further explore food intake, energy expenditure, neuroinflammation, and neuroendocrine signaling in the hypothalamus. Experiments were performed on 6-month-old male and female full transgenic (Tg5xFAD/5xFAD), heterozygous (Tg5xFAD/-), and non-transgenic (Non-Tg) littermates. Although histological analysis showed absence of Aß plaques in the hypothalamus of 5xFAD mice, this brain region displayed increased protein levels of GFAP and IBA1 in both Tg5xFAD/- and Tg5xFAD/5xFAD mice and increased expression of IL-1ß in Tg5xFAD/5xFAD mice, suggesting neuroinflammation. This condition was accompanied by decreased body weight, food intake, and energy expenditure in both Tg5xFAD/- and Tg5xFAD/5xFAD mice. Negative energy balance was associated with altered circulating levels of insulin, GLP-1, GIP, ghrelin, and resistin; decreased insulin and leptin hypothalamic signaling; dysregulation in main metabolic sensors (phosphorylated IRS1, STAT5, AMPK, mTOR, ERK2); and neuropeptides controlling energy balance (NPY, AgRP, orexin, MCH). These results suggest that glial activation and metabolic dysfunctions in the hypothalamus of a mouse model of AD likely result in negative energy balance, which may contribute to AD pathogenesis development.


Assuntos
Doença de Alzheimer/metabolismo , Metabolismo Energético/fisiologia , Hipotálamo/metabolismo , Doenças Metabólicas/metabolismo , Amiloide/metabolismo , Peptídeos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Proteínas Amiloidogênicas/metabolismo , Animais , Encéfalo/metabolismo , Modelos Animais de Doenças , Feminino , Polipeptídeo Inibidor Gástrico/metabolismo , Grelina/metabolismo , Peptídeo 1 Semelhante ao Glucagon/metabolismo , Insulina/metabolismo , Masculino , Camundongos , Camundongos Transgênicos , Placa Amiloide/metabolismo , Resistina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA