Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nat Commun ; 13(1): 5005, 2022 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-36008385

RESUMO

Tropical forests take up more carbon (C) from the atmosphere per annum by photosynthesis than any other type of vegetation. Phosphorus (P) limitations to C uptake are paramount for tropical and subtropical forests around the globe. Yet the generality of photosynthesis-P relationships underlying these limitations are in question, and hence are not represented well in terrestrial biosphere models. Here we demonstrate the dependence of photosynthesis and underlying processes on both leaf N and P concentrations. The regulation of photosynthetic capacity by P was similar across four continents. Implementing P constraints in the ORCHIDEE-CNP model, gross photosynthesis was reduced by 36% across the tropics and subtropics relative to traditional N constraints and unlimiting leaf P. Our results provide a quantitative relationship for the P dependence for photosynthesis for the front-end of global terrestrial C models that is consistent with canopy leaf measurements.


Assuntos
Florestas , Fósforo , Carbono , Fotossíntese , Folhas de Planta/fisiologia , Árvores/fisiologia
2.
Glob Chang Biol ; 26(10): 5856-5873, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32654340

RESUMO

Phosphorus (P) is an essential macro-nutrient required for plant metabolism and growth. Low P availability could potentially limit plant responses to elevated carbon dioxide (eCO2 ), but consensus has yet to be reached on the extent of this limitation. Here, based on data from experiments that manipulated both CO2 and P for young individuals of woody and non-woody species, we present a meta-analysis of P limitation impacts on plant growth, physiological, and morphological response to eCO2 . We show that low P availability attenuated plant photosynthetic response to eCO2 by approximately one-quarter, leading to a reduced, but still positive photosynthetic response to eCO2 compared to those under high P availability. Furthermore, low P limited plant aboveground, belowground, and total biomass responses to eCO2 , by 14.7%, 14.3%, and 12.4%, respectively, equivalent to an approximate halving of the eCO2 responses observed under high P availability. In comparison, low P availability did not significantly alter the eCO2 -induced changes in plant tissue nutrient concentration, suggesting tissue nutrient flexibility is an important mechanism allowing biomass response to eCO2 under low P availability. Low P significantly reduced the eCO2 -induced increase in leaf area by 14.3%, mirroring the aboveground biomass response, but low P did not affect the eCO2 -induced increase in root length. Woody plants exhibited stronger attenuation effect of low P on aboveground biomass response to eCO2 than non-woody plants, while plants with different mycorrhizal associations showed similar responses to low P and eCO2 interaction. This meta-analysis highlights crucial data gaps in capturing plant responses to eCO2 and low P availability. Field-based experiments with longer-term exposure of both CO2 and P manipulations are critically needed to provide ecosystem-scale understanding. Taken together, our results provide a quantitative baseline to constrain model-based hypotheses of plant responses to eCO2 under P limitation, thereby improving projections of future global change impacts.


Assuntos
Dióxido de Carbono , Ecossistema , Humanos , Fósforo , Fotossíntese , Plantas
3.
New Phytol ; 222(3): 1223-1229, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30659603

RESUMO

Contents Summary 1223 I. Introduction 1223 II. Photosynthesis and respiration 1224 III. Biomass growth 1224 IV. Carbon allocation 1225 V. Plant internal P redistribution 1226 VI. Plant P uptake 1227 VII. Conclusion 1227 Acknowledgements 1228 References 1228 SUMMARY: Our ability to understand the effect of nutrient limitation on ecosystem productivity is key to the prediction of future terrestrial carbon storage. Significant progress has been made to include phosphorus (P) cycle processes in land surface models (LSMs), but these efforts are focused on the soil component of the P cycle. Incorporating the soil component is important to estimate plant-available P, but does not necessarily address the vegetation response to P limitation or plant-soil interactions. A more detailed representation of plant P processes is needed to link nutrient availability and ecosystem productivity. We review physiological and biochemical evidence for vegetation responses to P availability, and recommend ways to move towards a more physiological representation of vegetation P processes in LSMs.


Assuntos
Modelos Biológicos , Fósforo/metabolismo , Fenômenos Fisiológicos Vegetais , Biomassa , Carbono/metabolismo , Fotossíntese
4.
New Phytol ; 209(1): 17-28, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26249015

RESUMO

The first generation of forest free-air CO2 enrichment (FACE) experiments has successfully provided deeper understanding about how forests respond to an increasing CO2 concentration in the atmosphere. Located in aggrading stands in the temperate zone, they have provided a strong foundation for testing critical assumptions in terrestrial biosphere models that are being used to project future interactions between forest productivity and the atmosphere, despite the limited inference space of these experiments with regards to the range of global ecosystems. Now, a new generation of FACE experiments in mature forests in different biomes and over a wide range of climate space and biodiversity will significantly expand the inference space. These new experiments are: EucFACE in a mature Eucalyptus stand on highly weathered soil in subtropical Australia; AmazonFACE in a highly diverse, primary rainforest in Brazil; BIFoR-FACE in a 150-yr-old deciduous woodland stand in central England; and SwedFACE proposed in a hemiboreal, Pinus sylvestris stand in Sweden. We now have a unique opportunity to initiate a model-data interaction as an integral part of experimental design and to address a set of cross-site science questions on topics including responses of mature forests; interactions with temperature, water stress, and phosphorus limitation; and the influence of biodiversity.


Assuntos
Dióxido de Carbono/farmacologia , Eucalyptus/fisiologia , Modelos Teóricos , Árvores/fisiologia , Atmosfera , Austrália , Biodiversidade , Brasil , Clima , Desidratação , Inglaterra , Eucalyptus/efeitos dos fármacos , Florestas , Fósforo/deficiência , Floresta Úmida , Solo , Árvores/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA