Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Lipids ; 49(11): 1081-9, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25204579

RESUMO

Long-chain n-3 polyunsaturated fatty acids (LC n-3 PUFA) in the diet protect against insulin resistance and obesity. Fibroblast growth factor-21 (Fgf21) is a hormonal factor released mainly by the liver that has powerful anti-diabetic effects. Here, we tested whether the beneficial metabolic effects of LC n-3 PUFA involve the induction of Fgf21. C57BL/6 J mice were exposed to an obesogenic, corn-oil-based, high-fat diet (cHF), or a diet in which corn oil was replaced with a fish-derived LC n-3 PUFA concentrate (cHF + F) using two experimental settings: short-term (3 weeks) and long-term treatment (8 weeks). CHF + F reduced body weight gain, insulinemia, and triglyceridemia compared to cHF. cHF increased plasma Fgf21 levels and hepatic Fgf21 gene expression compared with controls, but these effects were less pronounced or absent in cHF + F-fed mice. In contrast, hepatic expression of peroxisome proliferator-activated receptor (PPAR)-α target genes were more strongly induced by cHF + F than cHF, especially in the short-term treatment setting. The expression of genes encoding Fgf21, its receptors, and Fgf21 targets was unaltered by short-term LC n-3 PUFA treatment, with the exception of Ucp1 (uncoupling protein 1) and adiponectin genes, which were specifically up-regulated in white fat. In the long-term treatment setting, the expression of Fgf21 target genes and receptors was not differentially affected by LC n-3 PUFA. Collectively, our findings indicate that increased Fgf21 levels do not appear to be a major mechanism through which LC n-3 PUFA ameliorates high-fat-diet-associated metabolic disorders.


Assuntos
Ácidos Graxos Ômega-3/farmacologia , Fatores de Crescimento de Fibroblastos/sangue , Fatores de Crescimento de Fibroblastos/genética , Expressão Gênica/efeitos dos fármacos , Adiponectina/genética , Tecido Adiposo/efeitos dos fármacos , Tecido Adiposo/metabolismo , Animais , Peso Corporal/efeitos dos fármacos , Óleo de Milho/administração & dosagem , Dieta Hiperlipídica , Ácidos Graxos Ômega-3/administração & dosagem , Insulina/sangue , Canais Iônicos/genética , Fígado/efeitos dos fármacos , Fígado/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Proteínas Mitocondriais/genética , PPAR alfa/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Fatores de Tempo , Triglicerídeos/sangue , Proteína Desacopladora 1 , Regulação para Cima/efeitos dos fármacos , Aumento de Peso/efeitos dos fármacos
2.
Biochim Biophys Acta ; 1841(2): 267-78, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24295779

RESUMO

Non-alcoholic fatty liver disease (NAFLD) accompanies obesity and insulin resistance. Recent meta-analysis suggested omega-3 polyunsaturated fatty acids DHA and EPA to decrease liver fat in NAFLD patients. Antiinflammatory, hypolipidemic, and insulin-sensitizing effects ofDHA/EPA depend on their lipid form, with marine phospholipids showing better efficacy than fish oils. We characterized the mechanisms underlying beneficial effects of DHA/EPA phospholipids, alone or combined with an antidiabetic drug, on hepatosteatosis. C57BL/6N mice were fed for 7 weeks an obesogenic high-fat diet (cHF) or cHF-based interventions: (i) cHF supplemented with phosphatidylcholine-rich concentrate from herring (replacing 10% of dietary lipids; PC), (ii) cHF containing rosiglitazone (10 mg/kg diet; R), or (iii) PC + R. Metabolic analyses, hepatic gene expression and lipidome profiling were performed. Results showed that PC and PC + R prevented cHlF-induced weight gain and glucose intolerance, while all interventions reduced abdominal fat and plasma triacylglycerols. PC and PC + R also lowered hepatic and plasma cholesterol and reduced hepatosteatosis. Microarray analysis revealed integrated downregulation of hepatic lipogenic and cholesterol biosynthesis pathways by PC, while R-induced lipogenesis was fully counteracted in PC + R Gene expression changes in PC and PC + R were associated with preferential enrichment of hepatic phosphatidylcholine and phosphatidylethanolamine fractions by DHA/EPA. The complex downregulation of hepatic lipogenic and cholesterol biosynthesis genes and the antisteatotic effects were unique to DHA/EPA-containing phospholipids, since they were absent in mice fed soy-derived phosphatidylcholine. Thus, inhibition of lipid and cholesterol biosynthesis associated with potent antisteatotic effects in the liver in response to DHA/EPA-containing phospholipids support their use in NAFLD prevention and treatment.


Assuntos
Ácidos Graxos Ômega-3/farmacologia , Fígado Gorduroso/prevenção & controle , Fosfolipídeos/farmacologia , Animais , Vias Biossintéticas/efeitos dos fármacos , Colesterol/biossíntese , Fígado/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Obesos , Hepatopatia Gordurosa não Alcoólica , Triglicerídeos/biossíntese
3.
PLoS One ; 7(8): e43764, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22952760

RESUMO

Insulin resistance, the key defect in type 2 diabetes (T2D), is associated with a low capacity to adapt fuel oxidation to fuel availability, i.e., metabolic inflexibility. This, in turn, contributes to a further damage of insulin signaling. Effectiveness of T2D treatment depends in large part on the improvement of insulin sensitivity and metabolic adaptability of the muscle, the main site of whole-body glucose utilization. We have shown previously in mice fed an obesogenic high-fat diet that a combined use of n-3 long-chain polyunsaturated fatty acids (n-3 LC-PUFA) and thiazolidinediones (TZDs), anti-diabetic drugs, preserved metabolic health and synergistically improved muscle insulin sensitivity. We investigated here whether n-3 LC-PUFA could elicit additive beneficial effects on metabolic flexibility when combined with a TZD drug rosiglitazone. Adult male C57BL/6N mice were fed an obesogenic corn oil-based high-fat diet (cHF) for 8 weeks, or randomly assigned to various interventions: cHF with n-3 LC-PUFA concentrate replacing 15% of dietary lipids (cHF+F), cHF with 10 mg rosiglitazone/kg diet (cHF+ROSI), cHF+F+ROSI, or chow-fed. Indirect calorimetry demonstrated superior preservation of metabolic flexibility to carbohydrates in response to the combined intervention. Metabolomic and gene expression analyses in the muscle suggested distinct and complementary effects of the interventions, with n-3 LC-PUFA supporting complete oxidation of fatty acids in mitochondria and the combination with n-3 LC-PUFA and rosiglitazone augmenting insulin sensitivity by the modulation of branched-chain amino acid metabolism. These beneficial metabolic effects were associated with the activation of the switch between glycolytic and oxidative muscle fibers, especially in the cHF+F+ROSI mice. Our results further support the idea that the combined use of n-3 LC-PUFA and TZDs could improve the efficacy of the therapy of obese and diabetic patients.


Assuntos
Dieta Hiperlipídica/efeitos adversos , Ácidos Graxos Ômega-3/farmacologia , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/metabolismo , Obesidade/etiologia , Obesidade/metabolismo , Tiazolidinedionas/farmacologia , Animais , Sinergismo Farmacológico , Regulação da Expressão Gênica/efeitos dos fármacos , Glicólise/efeitos dos fármacos , Masculino , Metabolômica , Camundongos , Camundongos Endogâmicos C57BL , Fibras Musculares Esqueléticas/efeitos dos fármacos , Fibras Musculares Esqueléticas/metabolismo , Oxirredução/efeitos dos fármacos , Rosiglitazona
4.
PLoS One ; 7(6): e38834, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22701720

RESUMO

BACKGROUND: n-3 polyunsaturated fatty acids, namely docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA), reduce the risk of cardiovascular disease and can ameliorate many of obesity-associated disorders. We hypothesised that the latter effect will be more pronounced when DHA/EPA is supplemented as phospholipids rather than as triglycerides. METHODOLOGY/PRINCIPAL FINDINGS: In a 'prevention study', C57BL/6J mice were fed for 9 weeks on either a corn oil-based high-fat obesogenic diet (cHF; lipids ∼35% wt/wt), or cHF-based diets in which corn oil was partially replaced by DHA/EPA, admixed either as phospholipids or triglycerides from marine fish. The reversal of obesity was studied in mice subjected to the preceding cHF-feeding for 4 months. DHA/EPA administered as phospholipids prevented glucose intolerance and tended to reduce obesity better than triglycerides. Lipemia and hepatosteatosis were suppressed more in response to dietary phospholipids, in correlation with better bioavailability of DHA and EPA, and a higher DHA accumulation in the liver, white adipose tissue (WAT), and muscle phospholipids. In dietary obese mice, both DHA/EPA concentrates prevented a further weight gain, reduced plasma lipid levels to a similar extent, and tended to improve glucose tolerance. Importantly, only the phospholipid form reduced plasma insulin and adipocyte hypertrophy, while being more effective in reducing hepatic steatosis and low-grade inflammation of WAT. These beneficial effects were correlated with changes of endocannabinoid metabolome in WAT, where phospholipids reduced 2-arachidonoylglycerol, and were more effective in increasing anti-inflammatory lipids such as N-docosahexaenoylethanolamine. CONCLUSIONS/SIGNIFICANCE: Compared with triglycerides, dietary DHA/EPA administered as phospholipids are superior in preserving a healthy metabolic profile under obesogenic conditions, possibly reflecting better bioavalability and improved modulation of the endocannabinoid system activity in WAT.


Assuntos
Moduladores de Receptores de Canabinoides/metabolismo , Dieta Hiperlipídica , Endocanabinoides , Ácidos Graxos Ômega-3/metabolismo , Obesidade/dietoterapia , Fosfolipídeos/metabolismo , Tecido Adiposo Branco/metabolismo , Análise de Variância , Animais , Disponibilidade Biológica , Peso Corporal , Ácidos Docosa-Hexaenoicos/metabolismo , Ácido Eicosapentaenoico/metabolismo , Ácidos Graxos Ômega-3/administração & dosagem , Ácidos Graxos Ômega-3/farmacologia , Imuno-Histoquímica , Fígado/efeitos dos fármacos , Fígado/metabolismo , Masculino , Metabolômica , Camundongos , Camundongos Endogâmicos C57BL , Microscopia , Músculo Esquelético/metabolismo , Obesidade/prevenção & controle , Reação em Cadeia da Polimerase em Tempo Real , Triglicerídeos/metabolismo
5.
Clin Sci (Lond) ; 121(1): 29-41, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21275906

RESUMO

Advanced HF (heart failure) is associated with altered substrate metabolism. Whether modification of substrate use improves the course of HF remains unknown. The antihyperglycaemic drug MET (metformin) affects substrate metabolism, and its use might be associated with improved outcome in diabetic HF. The aim of the present study was to examine whether MET would improve cardiac function and survival also in non-diabetic HF. Volume-overload HF was induced in male Wistar rats by creating ACF (aortocaval fistula). Animals were randomized to placebo/MET (300 mg·kg(-1) of body weight·day(-1), 0.5% in food) groups and underwent assessment of metabolism, cardiovascular and mitochondrial functions (n=6-12/group) in advanced HF stage (week 21). A separate cohort served for survival analysis (n=10-90/group). The ACF group had marked cardiac hypertrophy, increased LVEDP (left ventricular end-diastolic pressure) and lung weight confirming decompensated HF, increased circulating NEFAs (non-esterified 'free' fatty acids), intra-abdominal fat depletion, lower glycogen synthesis in the skeletal muscle (diaphragm), lower myocardial triacylglycerol (triglyceride) content and attenuated myocardial (14)C-glucose and (14)C-palmitate oxidation, but preserved mitochondrial respiratory function, glucose tolerance and insulin sensitivity. MET therapy normalized serum NEFAs, decreased myocardial glucose oxidation, increased myocardial palmitate oxidation, but it had no effect on myocardial gene expression, AMPK (AMP-activated protein kinase) signalling, ATP level, mitochondrial respiration, cardiac morphology, function and long-term survival, despite reaching therapeutic serum levels (2.2±0.7 µg/ml). In conclusion, MET-induced enhancement of myocardial fatty acid oxidation had a neutral effect on cardiac function and survival. Recently reported cardioprotective effects of MET may not be universal to all forms of HF and may require AMPK activation or ATP depletion. No increase in mortality on MET supports its safe use in diabetic HF.


Assuntos
Insuficiência Cardíaca/tratamento farmacológico , Hipoglicemiantes/uso terapêutico , Metformina/uso terapêutico , Quinases Proteína-Quinases Ativadas por AMP , Animais , Glicemia/metabolismo , Peso Corporal/efeitos dos fármacos , Modelos Animais de Doenças , Avaliação Pré-Clínica de Medicamentos , Glicogênio/metabolismo , Insuficiência Cardíaca/diagnóstico por imagem , Insuficiência Cardíaca/fisiopatologia , Hemodinâmica/efeitos dos fármacos , Hipoglicemiantes/sangue , Metabolismo dos Lipídeos/efeitos dos fármacos , Pulmão/patologia , Masculino , Metformina/sangue , Mitocôndrias Cardíacas/fisiologia , Miocárdio/metabolismo , Miocárdio/patologia , Tamanho do Órgão/efeitos dos fármacos , Proteínas Quinases/metabolismo , Ratos , Ratos Wistar , Análise de Sobrevida , Ultrassonografia
6.
Diabetes ; 59(11): 2737-46, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-20693347

RESUMO

OBJECTIVE: The induction of obesity, dyslipidemia, and insulin resistance by high-fat diet in rodents can be prevented by n-3 long-chain polyunsaturated fatty acids (LC-PUFAs). We tested a hypothesis whether AMP-activated protein kinase (AMPK) has a role in the beneficial effects of n-3 LC-PUFAs. RESEARCH DESIGN AND METHODS: Mice with a whole-body deletion of the α2 catalytic subunit of AMPK (AMPKα2(-/-)) and their wild-type littermates were fed on either a low-fat chow, or a corn oil-based high-fat diet (cHF), or a cHF diet with 15% lipids replaced by n-3 LC-PUFA concentrate (cHF+F). RESULTS: Feeding a cHF diet induced obesity, dyslipidemia, hepatic steatosis, and whole-body insulin resistance in mice of both genotypes. Although cHF+F feeding increased hepatic AMPKα2 activity, the body weight gain, dyslipidemia, and the accumulation of hepatic triglycerides were prevented by the cHF+F diet to a similar degree in both AMPKα2(-/-) and wild-type mice in ad libitum-fed state. However, preservation of hepatic insulin sensitivity by n-3 LC-PUFAs required functional AMPKα2 and correlated with the induction of adiponectin and reduction in liver diacylglycerol content. Under hyperinsulinemic-euglycemic conditions, AMPKα2 was essential for preserving low levels of both hepatic and plasma triglycerides, as well as plasma free fatty acids, in response to the n-3 LC-PUFA treatment. CONCLUSIONS: Our results show that n-3 LC-PUFAs prevent hepatic insulin resistance in an AMPKα2-dependent manner and support the role of adiponectin and hepatic diacylglycerols in the regulation of insulin sensitivity. AMPKα2 is also essential for hypolipidemic and antisteatotic effects of n-3 LC-PUFA under insulin-stimulated conditions.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Ácidos Graxos Ômega-3/metabolismo , Ácidos Graxos Insaturados/metabolismo , Fígado/fisiologia , Proteínas Quinases Ativadas por AMP/deficiência , Animais , Técnicas de Cultura de Células , Dieta com Restrição de Gorduras , Gorduras na Dieta/farmacologia , Ácidos Graxos Ômega-3/uso terapêutico , Ácidos Graxos Insaturados/farmacologia , Técnica Clamp de Glucose , Hepatócitos/citologia , Hepatócitos/fisiologia , Hiperinsulinismo , Resistência à Insulina , Fígado/efeitos dos fármacos , Fígado/enzimologia , Síndrome Metabólica/prevenção & controle , Camundongos , Camundongos Knockout , Subunidades Proteicas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA