Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Molecules ; 26(15)2021 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-34361686

RESUMO

Limonene is a monoterpene confined to the family of Rutaceae, showing several biological properties such as antioxidant, anti-inflammatory, anticancer, antinociceptive and gastroprotective characteristics. Recently, there is notable interest in investigating the pharmacological effects of limonene in various chronic diseases due to its mitigating effect on oxidative stress and inflammation and regulating apoptotic cell death. There are several available studies demonstrating the neuroprotective role of limonene in neurodegenerative diseases, including Alzheimer's disease, multiple sclerosis, epilepsy, anxiety, and stroke. The high abundance of limonene in nature, its safety profile, and various mechanisms of action make this monoterpene a favorable molecule to be developed as a nutraceutical for preventive purposes and as an alternative agent or adjuvant to modern therapeutic drugs in curbing the onset and progression of neurodegenerative diseases. This manuscript presents a comprehensive review of the available scientific literature discussing the pharmacological activities of limonene or plant products containing limonene which attribute to the protective and therapeutic ability in neurodegenerative disorders. This review has been compiled based on the existing published articles confined to limonene or limonene-containing natural products investigated for their neurotherapeutic or neuroprotective potential. All the articles available in English or the abstract in English were extracted from different databases that offer an access to diverse journals. These databases are PubMed, Scopus, Google Scholar, and Science Direct. Collectively, this review emphasizes the neuroprotective potential of limonene against neurodegenerative and other neuroinflammatory diseases. The available data are indicative of the nutritional use of products containing limonene and the pharmacological actions and mechanisms of limonene and may direct future preclinical and clinical studies for the development of limonene as an alternative or complementary phytomedicine. The pharmacophore can also provide a blueprint for further drug discovery using numerous drug discovery tools.


Assuntos
Anti-Inflamatórios/uso terapêutico , Antioxidantes/uso terapêutico , Produtos Biológicos/uso terapêutico , Citrus/química , Limoneno/uso terapêutico , Doenças Neurodegenerativas/tratamento farmacológico , Fármacos Neuroprotetores/uso terapêutico , Fitoterapia/métodos , Extratos Vegetais/uso terapêutico , Animais , Produtos Biológicos/química , Descoberta de Drogas/métodos , Humanos , Óleos Voláteis/química , Estresse Oxidativo/efeitos dos fármacos
2.
Phytomedicine ; 84: 153405, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33636578

RESUMO

BACKGROUND: Myocardial infarction (MI) is a lethal manifestation of cardiovascular diseases. Oxidative stress, inflammation, and subsequent cell death are known to play crucial roles in the pathogenesis of MI. Despite tremendous developments in interventional cardiology, there is need for novel drugs for the prevention and treatment of MI. For the development of novel drugs, usage of natural products has gained attention as a therapeutic approach for ischemic myocardial injury. Among many popular plant-derived compounds, Nootkatone (NKT), a natural bioactive sesquiterpene, abundantly found in grapefruit, has attracted attention for its plausible health benefits and pharmacological properties. PURPOSE: The present study investigated the cardioprotective effects of NKT in rats against MI induced by isoproterenol (ISO), a synthetic catecholamine and ß-adrenergic agonist that produces MI in a physiologically relevant manner. METHODS: MI was induced in male Wistar albino rats by subcutaneous injection of ISO (85 mg/kg body weight) on 9th and 10th day. Rats were pre- and co-treated with NKT (10 mg/kg) through daily oral administration for eleven days. RESULTS: ISO-induced MI was characterized by a significant decline in cardiac function, increased serum levels of cardiomyocyte injury markers, enhanced oxidative stress, and altered PI3K/Akt and NrF2/Keap1/HO-1 signaling pathways. ISO also elevated the levels of myocardial pro-inflammatory cytokines, promoted lysosomal dysfunction, altered TLR4-NFκB/MAPK signaling, and triggered intrinsic apoptotic pathway in heart tissues. However, NKT administration significantly restored or modulated majority of the altered biochemical and molecular parameters in ISO-treated rats. Furthermore, histopathological observations confirmed the myocardial restoring effect of NKT. CONCLUSION: The present study concludes the cardioprotective effects and underlying mechanisms of NKT against ISO-induced MI in rats, and suggests that NKT or plants containing NKT could be an alternative to cardioprotective agents in ischemic heart diseases.


Assuntos
Apoptose/efeitos dos fármacos , Coração/efeitos dos fármacos , Isoproterenol/toxicidade , Infarto do Miocárdio/induzido quimicamente , Estresse Oxidativo/efeitos dos fármacos , Sesquiterpenos Policíclicos/farmacologia , Animais , Inflamação/tratamento farmacológico , Masculino , Infarto do Miocárdio/prevenção & controle , Miocárdio/metabolismo , Ratos , Ratos Wistar
3.
Biomolecules ; 10(10)2020 10 08.
Artigo em Inglês | MEDLINE | ID: mdl-33049992

RESUMO

Rotenone (ROT), a plant-derived pesticide is a well-known environmental neurotoxin associated with causation of Parkinson's disease (PD). ROT impairs mitochondrial dysfunction being mitochondrial complex-I (MC-1) inhibitor and perturbs antioxidant-oxidant balance that contributes to the onset and development of neuroinflammation and neurodegeneration in PD. Due to the scarcity of agents to prevent the disease or to cure or halt the progression of symptoms of PD, the focus is on exploring agents from naturally occurring dietary phytochemicals. Among numerous phytochemicals, α-Bisabolol (BSB), natural monocyclic sesquiterpene alcohol found in many ornamental flowers and edible plants garnered attention due to its potent pharmacological properties and therapeutic potential. Therefore, the present study investigated the neuroprotective effects of BSB in a rat model of ROT-induced dopaminergic neurodegeneration, a pathogenic feature of PD and underlying mechanism targeting oxidative stress, inflammation and apoptosis. BSB treatment significantly prevented ROT-induced loss of dopaminergic neurons and fibers in the substantia nigra and striatum respectively. BSB treatment also attenuated ROT-induced oxidative stress evidenced by inhibition of MDA formation and GSH depletion as well as improvement in antioxidant enzymes, SOD and catalase. BSB treatment also attenuated ROT-induced activation of the glial cells as well as the induction and release of proinflammatory cytokines (IL-1ß, IL-6 and TNF-α) and inflammatory mediators (iNOS and COX-2) in the striatum. In addition to countering oxidative stress and inflammation, BSB also attenuated apoptosis of dopaminergic neurons by attenuating downregulation of anti-apoptotic protein Bcl-2 and upregulation of pro-apoptotic proteins Bax, cleaved caspases-3 and 9. Further, BSB was observed to attenuate mitochondrial dysfunction by inhibiting mitochondrial lipid peroxidation, cytochrome-C release and reinstates the levels/activity of ATP and MC-I. The findings of the study demonstrate that BSB treatment salvaged dopaminergic neurons, attenuated microglia and astrocyte activation, induction of inflammatory mediators, proinflammatory cytokines and reduced the expression of pro-apoptotic markers. The in vitro study on ABTS radical revealed the antioxidant potential of BSB. The results of the present study are clearly suggestive of the neuroprotective effects of BSB through antioxidant, anti-inflammatory and anti-apoptotic properties in ROT-induced model of PD.


Assuntos
Apoptose/efeitos dos fármacos , Suplementos Nutricionais , Sesquiterpenos Monocíclicos/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Doença de Parkinson Secundária/tratamento farmacológico , Compostos Fitoquímicos/farmacologia , Animais , Inflamação/induzido quimicamente , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Masculino , Doença de Parkinson Secundária/metabolismo , Doença de Parkinson Secundária/patologia , Ratos , Ratos Wistar
4.
Int J Mol Sci ; 20(7)2019 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-30934738

RESUMO

Parkinson's disease (PD), a multifactorial movement disorder that involves progressive degeneration of the nigrostriatal system affecting the movement ability of the patient. Oxidative stress and neuroinflammation both are shown to be involved in the etiopathogenesis of PD. The aim of this study was to evaluate the therapeutic potential of thymol, a dietary monoterpene phenol in rotenone (ROT)-induced neurodegeneration in rats that precisely mimics PD in humans. Male Wistar rats were injected ROT at a dose of 2.5 mg/kg body weight for 4 weeks, to induce PD. Thymol was co-administered for 4 weeks at a dose of 50 mg/kg body weight, 30 min prior to ROT injection. The markers of dopaminergic neurodegeneration, oxidative stress and inflammation were estimated using biochemical assays, enzyme-linked immunosorbent assay, western blotting and immunocytochemistry. ROT challenge increased the oxidative stress markers, inflammatory enzymes and cytokines as well as caused significant damage to nigrostriatal dopaminergic system of the brain. Thymol treatment in ROT challenged rats appears to significantly attenuate dopaminergic neuronal loss, oxidative stress and inflammation. The present study showed protective effects of thymol in ROT-induced neurotoxicity and neurodegeneration mediated by preservation of endogenous antioxidant defense networks and attenuation of inflammatory mediators including cytokines and enzymes.


Assuntos
Dieta , Neurônios Dopaminérgicos/patologia , Degeneração Neural/prevenção & controle , Fármacos Neuroprotetores/uso terapêutico , Doença de Parkinson/tratamento farmacológico , Doença de Parkinson/patologia , Timol/uso terapêutico , Animais , Catalase/metabolismo , Ciclo-Oxigenase 2/metabolismo , Citocinas/metabolismo , Modelos Animais de Doenças , Neurônios Dopaminérgicos/efeitos dos fármacos , Neurônios Dopaminérgicos/metabolismo , Glutationa/metabolismo , Mediadores da Inflamação/metabolismo , Peroxidação de Lipídeos/efeitos dos fármacos , Masculino , Malondialdeído/metabolismo , Neostriado/efeitos dos fármacos , Neostriado/patologia , Degeneração Neural/patologia , Neuroglia/efeitos dos fármacos , Neuroglia/metabolismo , Fármacos Neuroprotetores/farmacologia , Óxido Nítrico Sintase Tipo II/metabolismo , Ratos Wistar , Rotenona , Substância Negra/efeitos dos fármacos , Substância Negra/patologia , Superóxido Dismutase/metabolismo , Timol/química , Timol/farmacologia , Tirosina 3-Mono-Oxigenase/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA