Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Genomics ; 112(1): 99-107, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31356969

RESUMO

Snow Mountain Garlic grows in the high altitudes of the Himalayas under low temperature conditions. It contains various bioactive compounds whose metabolic pathways have not been worked out at genomic level. The present work is the first report on the transcriptome sequencing of this plant. >43 million paired-end reads (301 × 2) were generated using Illumina Miseq sequencing technology. Assembling of the sequencing data resulted in 326,785 transcripts. Differentially expressed genes between the clove and leaf tissues were identified and characterized. Besides, greater emphasis was laid on the genes, which were highly expressed in clove since the latter is assumed to contain high content of the bioactive compounds. Further analysis led to the identification of the genes plausibly involved in the organosulfur metabolism. We also identified several simple sequence repeats and single nucleotide polymorphism. These constitute valuable genetic resource for research and further genetic improvement of the plant.


Assuntos
Alho/genética , Compostos de Enxofre/metabolismo , Transcriptoma , Alho/metabolismo , Perfilação da Expressão Gênica , Ontologia Genética , Genes de Plantas , Marcadores Genéticos , Sequenciamento de Nucleotídeos em Larga Escala , Mutação INDEL , Redes e Vias Metabólicas/genética , Repetições de Microssatélites , Folhas de Planta/genética , Folhas de Planta/metabolismo , Polimorfismo de Nucleotídeo Único , Domínios Proteicos
2.
J Chem Inf Model ; 56(5): 930-40, 2016 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-27149193

RESUMO

Mycobacterium tuberculosis shikimate kinase (Mtb-SK) is a key enzyme involved in the biosynthesis of aromatic amino acids through the shikimate pathway. Since it is proven to be essential for the survival of the microbe and is absent from mammals, it is a promising target for anti-TB drug discovery. In this study, a combined approach of in silico similarity search and pharmacophore building using already reported inhibitors was used to screen a procured library of 20,000 compounds of the commercially available ChemBridge database. From the in silico screening, 15 hits were identified, and these hits were evaluated in vitro for Mtb-SK enzyme inhibition. Two compounds presented significant enzyme inhibition with IC50 values of 10.69 ± 0.9 and 46.22 ± 1.2 µM. The best hit was then evaluated for the in vitro mode of inhibition where it came out to be an uncompetitive and noncompetitive inhibitor with respect to shikimate (SKM) and ATP, respectively, suggesting its binding at an allosteric site. Potential binding sites of Mtb-SK were identified which confirmed the presence of an allosteric binding pocket apart from the ATP and SKM binding sites. The docking simulations were performed at this pocket in order to find the mode of binding of the best hit in the presence of substrates and the products of the enzymatic reaction. Molecular dynamics (MD) simulations elucidated the probability of inhibitor binding at the allosteric site in the presence of ADP and shikimate-3-phosphate (S-3-P), that is, after the formation of products of the reaction. The inhibitor binding may prevent the release of the product from Mtb-SK, thereby inhibiting its activity. The binding stability and the key residue interactions of the inhibitor to this product complex were also revealed by the MD simulations. Residues ARG43, ILE45, and PHE57 were identified as crucial that were involved in interactions with the best hit. This is the first report of an allosteric binding site of Mtb-SK, which could largely address the selectivity issue associated with kinase inhibitors.


Assuntos
Benzotiazóis/química , Benzotiazóis/farmacologia , Mycobacterium tuberculosis/enzimologia , Fosfotransferases (Aceptor do Grupo Álcool)/antagonistas & inibidores , Sítio Alostérico/efeitos dos fármacos , Antituberculosos/química , Antituberculosos/metabolismo , Antituberculosos/farmacologia , Benzotiazóis/metabolismo , Domínio Catalítico , Avaliação Pré-Clínica de Medicamentos , Inibidores Enzimáticos/química , Inibidores Enzimáticos/metabolismo , Inibidores Enzimáticos/farmacologia , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Mycobacterium tuberculosis/efeitos dos fármacos , Fosfotransferases (Aceptor do Grupo Álcool)/química , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo
3.
PLoS One ; 8(9): e73804, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24066073

RESUMO

Uridine diphosphate glycosyltransferases (UGTs) are pivotal in the process of glycosylation for decorating natural products with sugars. It is one of the versatile mechanisms in determining chemical complexity and diversity for the production of suite of pharmacologically active plant natural products. Picrorhiza kurrooa is a highly reputed medicinal herb known for its hepato-protective properties which are attributed to a novel group of iridoid glycosides known as picrosides. Although the plant is well studied in terms of its pharmacological properties, very little is known about the biosynthesis of these important secondary metabolites. In this study, we identified two family-1 glucosyltransferases from P. kurrooa. The full length cDNAs of UGT94F4 and UGT86C4 contained open reading frames of 1455 and 1422 nucleotides, encoding polypeptides of 484 and 473 amino acids respectively. UGT94F2 and UGT86C4 showed differential expression pattern in leaves, rhizomes and inflorescence. To elucidate whether the differential expression pattern of the two Picrorhiza UGTs correlate with transcriptional regulation via their promoters and to identify elements that could be recognized by known iridoid-specific transcription factors, upstream regions of each gene were isolated and scanned for putative cis-regulatory elements. Interestingly, the presence of cis-regulatory elements within the promoter regions of each gene correlated positively with their expression profiles in response to different phytohormones. HPLC analysis of picrosides extracted from different tissues and elicitor-treated samples showed a significant increase in picroside levels, corroborating well with the expression profile of UGT94F2 possibly indicating its implication in picroside biosynthesis. Using homology modeling and molecular docking studies, we provide an insight into the donor and acceptor specificities of both UGTs identified in this study. UGT94F2 was predicted to be an iridoid-specific glucosyltransferase having maximum binding affinity towards 7-deoxyloganetin while as UGT86C4 was predicted to be a kaempferol-specific glucosyltransferase. These are the first UGTs being reported from P. kurrooa.


Assuntos
Glicosiltransferases/química , Glicosiltransferases/metabolismo , Picrorhiza/enzimologia , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Glicosiltransferases/classificação , Glicosiltransferases/genética , Dados de Sequência Molecular , Filogenia , Picrorhiza/metabolismo , Proteínas de Plantas/classificação , Proteínas de Plantas/genética , Estrutura Secundária de Proteína , Especificidade por Substrato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA