Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Curr Protein Pept Sci ; 24(6): 518-532, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37259218

RESUMO

BACKGROUND: A hallmark pathology of Alzheimer's disease (AD) is the construction of neurofibrillary tangles, which are made of hyperphosphorylated Tau. The cis-proline isomer of the pThr/Ser-Pro sequence has been suggested to act as an aggregation precursor according to the 'Cistauosis' hypothesis; however, this aggregation scheme is not yet completely approved. Various peptidyl-prolyl isomerases (PPIases) may specifically isomerize cis/trans-proline bonds and restitute Tau's ability to attach microtubules and may control Tau amyloid aggregation in AD. METHODS: In this study, we provided experimental evidence for indicating the effects of the plant Cyclophilin (P-Cyp) from Platanus orientalis pollens on the Tau aggregation by various spectroscopic techniques. RESULTS: Our findings disclosed that the rate/extent of amyloid formation in the Tau sample which is incubated with P-Cyp decreased and these observations do not seem to be due to the macromolecular crowding effect. Also, as proven that 80% of the prolines in the unfolded protein are in the trans conformation, urea-induced unfolding analyses confirmed this conclusion and showed that the aggregation rate/extent of urea-treated Tau samples decreased compared with those of the native protein. Also, XRD analysis indicated the reduction of scattering intensities and beta structures of amyloid fibrils in the presence of P-Cyp. Therefore, the ability of P-Cyp to suppress Tau aggregation probably depends on cis to trans isomerization of proline peptide bonds (X-Pro) and decreasing cis isomers in vitro. CONCLUSION: The findings of the current study may inspire possible protective/detrimental effects of various types of cyclophilins on AD onset/progression through direct regulation of intracellular Tau molecules and provides evidence that a protein from a plant source is able to enter the cell cytoplasm and may affect the behavior of cytoplasmic proteins.


Assuntos
Doença de Alzheimer , Ciclofilinas , Ciclofilinas/metabolismo , Amiloide/metabolismo , Alérgenos , Proteínas tau/metabolismo , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Pólen/metabolismo , Prolina/farmacologia , Prolina/química , Prolina/metabolismo , Ureia , Peptídeos beta-Amiloides
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA