Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-38564109

RESUMO

INTRODUCTION: Reunion Island is a French overseas department in the South West Indian Ocean with a unique multi-ethnic population. Cardiovascular diseases are the most common chronic conditions with higher prevalences of hypertension and diabetes compared to mainland France. Moreover, Reunion Island is particularly exposed to vector-borne diseases such as chikungunya and dengue. Our objective is to describe the prevalence of cardiometabolic and infectious diseases in Reunion Island and explore causal mechanisms linking these diseases. METHODS: The REUNION study is an ongoing French prospective study. From January 2022, 2,000 consenting participants (18-68 years old) are being recruited from the general population according to polling lists and random generation of cellphone number. Baseline examination consists of (i) general health examination, assessment of cardiovascular risk factors, markers of subclinical atherosclerosis, bronchial obstruction, neuropathic and autonomic dysfunction, (ii) questionnaires to determine sociodemographic characteristics, diet, exposure to vector-borne diseases, mental health and cognitive functions, social inequalities in health and ethnic origins, (iii) biological sampling for determination of cardiovascular risk factors, seroprevalence of infectious diseases, innovative lipid biomarkers, advanced omics, composition of intestinal, periodontal and skin microbiota, and biobanking. CONCLUSIONS: The REUNION study should provide new insights into the prevalence of cardiometabolic and infectious diseases, as well as their potential associations through the examination of various environmental pathways and a wide range of health aspects.

2.
Antioxidants (Basel) ; 11(7)2022 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-35883799

RESUMO

Obesity has reached epidemic proportions, and its prevalence tripled worldwide between 1975 and 2016, especially in Reunion Island, a French overseas region. Psiloxylon mauritianum, an endemic medicinal plant from Reunion Island registered in the French pharmacopeia, has recently gained interest in combating metabolic disorders because of its traditional lipid-lowering and "anti-diabetic" use. However, scientific data are lacking regarding its toxicity and its real benefits on metabolic diseases. In this study, we aim to determine the toxicity of an aqueous extract of P. mauritianum on zebrafish eleutheroembryos following the OECD toxicity assay (Organization for Economic Cooperation and Development, guidelines 36). After defining a non-toxic dose, we determined by liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS) that this extract is rich in gallic acid but contains also caffeoylquinic acid, kaempferol and quercetin, as well as their respective derivatives. We also showed that the non-toxic dose exhibits lipid-lowering effects in a high-fat-diet zebrafish larvae model. In a next step, we demonstrated its preventive effects on body weight gain, hyperglycemia and liver steatosis in a diet-induced obesity model (DIO) performed in adults. It also limited the deleterious effects of overfeeding on the central nervous system (i.e., cerebral oxidative stress, blood-brain barrier breakdown, neuro-inflammation and blunted neurogenesis). Interestingly, adult DIO fish treated with P. mauritianum display normal feeding behavior but higher feces production. This indicates that the "anti-weight-gain" effect is probably due to the action of P. mauritianum on the intestinal lipid absorption and/or on the microbiota, leading to the increase in feces production. Therefore, in our experimental conditions, the aqueous extract of P. mauritianum exhibited "anti-weight-gain" properties, which prevented the development of obesity and its deleterious effects at the peripheral and central levels. These effects should be further investigated in preclinical models of obese/diabetic mice, as well as the impact of P. mauritianum on the gut microbiota.

3.
Antioxidants (Basel) ; 11(5)2022 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-35624723

RESUMO

Metabolic disorders related to obesity and type 2 diabetes are associated with aggravated cerebrovascular damages during stroke. In particular, hyperglycemia alters redox and inflammatory status, leading to cerebral endothelial cell dysfunction, blood-brain barrier (BBB) disruption and brain homeostasis loss. Polyphenols constitute the most abundant dietary antioxidants and exert anti-inflammatory effects that may improve cerebrovascular complications in stroke. This study evaluated the effects of the characterized polyphenol-rich extract of Antirhea borbonica medicinal plant and its major constituent caffeic acid on a high-fat diet (HFD)-induced obesity mouse model during ischemic stroke, and murine bEnd3 cerebral endothelial cells in high glucose condition. In vivo, polyphenols administered by oral gavage for 12 weeks attenuated insulin resistance, hyperglycemia, hyperinsulinemia and dyslipidemia caused by HFD-induced obesity. Polyphenols limited brain infarct, hemorrhagic transformation and BBB disruption aggravated by obesity during stroke. Polyphenols exhibited anti-inflammatory and antioxidant properties by reducing IL-1ß, IL-6, MCP-1, TNF-α and Nrf2 overproduction as well as total SOD activity elevation at the cerebral or peripheral levels in obese mice. In vitro, polyphenols decreased MMP-2 activity that correlated with MCP-1 secretion and ROS intracellular levels in hyperglycemic condition. Protective effects of polyphenols were linked to their bioavailability with evidence for circulating metabolites including caffeic acid, quercetin and hippuric acid. Altogether, these findings show that antioxidant polyphenols reduced cerebrovascular, inflammatory and metabolic disorders aggravated by obesity in a mouse model of stroke. It will be relevant to assess polyphenol-based strategies to improve the clinical consequences of stroke in the context of obesity and diabetes.

4.
Front Pharmacol ; 13: 832928, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35359845

RESUMO

Hypericum lanceolatum Lam. (H. lanceolatum) is a traditional medicinal plant from Reunion Island used for its pleiotropic effects mainly related to its antioxidant activity. The present work aimed to 1) determine the potential toxicity of the plant aqueous extract in vivo and 2) investigate its putative biological properties using several zebrafish models of oxidative stress, regeneration, estrogenicity, neurogenesis and metabolic disorders. First, we characterized the polyphenolic composition by liquid chromatography-tandem mass spectrometry (LC-MS/MS) and identified chlorogenic acid isomers, quercetin and kaempferol derivatives as the major compounds. We then evaluated for the first time the toxicity of an aqueous extract of H. lanceolatum and determined a maximum non-toxic concentration (MNTC) in zebrafish eleutheroembryos from 0 to 96 hpf following OECD (Organization for Economic Cooperation and Development) guidelines. This MNTC test was also determined on hatched eleutheroembryos after 2 days of treatment (from 3 to 5 dpf). In our study, the anti-estrogenic effects of H. lanceolatum are supported by the data from the EASZY assay. In a tail amputation model, we showed that H. lanceolatum at its MNTC displays antioxidant properties, favors immune cell recruitment and tissue regeneration. Our results also highlighted its beneficial effects in metabolic disorders. Indeed, H. lanceolatum efficiently reduces lipid accumulation and body mass index in overfed larva- and adult-models, respectively. In addition, we show that H. lanceolatum did not improve fasting blood glucose levels in a hyperglycemic zebrafish model but surprisingly inhibited neurogenesis impairment observed in diabetic conditions. In conclusion, our study highlights the antioxidant, pro-regenerative, anti-lipid accumulation and pro-neurogenic effects of H. lanceolatum in vivo and supports the use of this traditional medicinal plant as a potential alternative in the prevention and/or treatment of metabolic disorders.

5.
Biomedicines ; 9(4)2021 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-33808509

RESUMO

The renal fibrotic process is characterized by a chronic inflammatory state and oxidative stress. Antirhea borbonica (A. borbonica) is a French medicinal plant found in Reunion Island and known for its antioxidant and anti-inflammatory activities mostly related to its high polyphenols content. We investigated whether oral administration of polyphenol-rich extract from A. borbonica could exert in vivo a curative anti-renal fibrosis effect. To this aim, three days after unilateral ureteral obstruction (UUO), mice were daily orally treated either with a non-toxic dose of polyphenol-rich extract from A. borbonica or with caffeic acid (CA) for 5 days. The polyphenol-rich extract from A. borbonica, as well as CA, the predominant phenolic acid of this medicinal plant, exerted a nephroprotective effect through the reduction in the three phases of the fibrotic process: (i) macrophage infiltration, (ii) myofibroblast appearance and (iii) extracellular matrix accumulation. These effects were associated with the mRNA down-regulation of Tgf-ß, Tnf-α, Mcp1 and NfkB, as well as the upregulation of Nrf2. Importantly, we observed an increased antioxidant enzyme activity for GPX and Cu/ZnSOD. Last but not least, desorption electrospray ionization-high resolution/mass spectrometry (DESI-HR/MS) imaging allowed us to visualize, for the first time, CA in the kidney tissue. The present study demonstrates that polyphenol-rich extract from A. borbonica significantly improves, in a curative way, renal tubulointerstitial fibrosis progression in the UUO mouse model.

6.
Nutrients ; 13(1)2021 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-33478034

RESUMO

Atherosclerosis is a hallmark of most cardiovascular diseases. The implication of macrophages in this pathology is widely documented, notably for their contribution to lipid accumulation within the arterial wall, associated with oxidative stress and inflammation processes. In order to prevent or limit the atherosclerosis damage, nutritional approaches and medicinal plant-based therapies need to be considered. In Reunion Island, medicinal plant-based beverages are traditionally used for their antioxidant, lipid-lowering and anti-inflammatory properties. The aim of our study was to assess the protective effects of eight medicinal plant decoctions in an in vitro model of RAW 264.7 murine macrophages exposed to pro-atherogenic conditions (oxidized low-density lipoproteins-ox-LDL-E. coli Lipopolysaccharides-LPS). The impact of polyphenol-rich medicinal plant decoctions on cell viability was evaluated by Neutral Red assay. Fluorescent ox-LDL uptake was assessed by flow cytometry and confocal microscopy. Activation of NF-κB was evaluated by quantification of secreted alkaline phosphatase in RAW-Blue™ macrophages. Our results show that medicinal plant decoctions limited the cytotoxicity induced by ox-LDL on macrophages. Flow cytometry analysis in macrophages demonstrated that medicinal plant decoctions from S. cumini and P. mauritianum decreased ox-LDL uptake and accumulation by more than 70%. In addition, medicinal plant decoctions also inhibited NF-κB pathway activation in the presence of pro-inflammatory concentrations of E. coli LPS. Our data suggest that medicinal plant decoctions exert protective effects on ox-LDL-induced cytotoxicity and limited macrophage lipid uptake. Moreover, herbal preparations displayed anti-inflammatory properties on macrophages that can be of interest for limiting the atherosclerotic process.


Assuntos
Aterosclerose , Macrófagos/fisiologia , Extratos Vegetais/farmacologia , Plantas Medicinais , Animais , Anti-Inflamatórios/farmacologia , Aterosclerose/imunologia , Aterosclerose/prevenção & controle , Aterosclerose/terapia , Sobrevivência Celular , Humanos , Lipopolissacarídeos/imunologia , Lipoproteínas LDL/metabolismo , Lipoproteínas LDL/farmacologia , Macrófagos/metabolismo , Camundongos , NF-kappa B/metabolismo , Fitoterapia , Células RAW 264.7 , Reunião
7.
Antioxidants (Basel) ; 11(1)2021 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-35052538

RESUMO

The endothelial integrity is the cornerstone of the atherogenic process. Low-density lipoprotein (LDL) oxidation occurring within atheromatous plaques leads to deleterious vascular effects including endothelial cell cytotoxicity. The aim of this study was to evaluate the vascular antioxidant and cytoprotective effects of polyphenol-rich extracts from two medicinal plants from the Reunion Island: Antirhea borbonica (A. borbonica), Doratoxylon apetalum (D. apetalum). The polyphenol-rich extracts were obtained after dissolving each dry plant powder in an aqueous acetonic solution. Quantification of polyphenol content was achieved by the Folin-Ciocalteu assay and total phenol content was expressed as g gallic acid equivalent/100 g plant powder (GAE). Human vascular endothelial cells were incubated with increasing concentrations of polyphenols (1-50 µM GAE) before stimulation with oxidized low-density lipoproteins (oxLDLs). LDL oxidation was assessed by quantification of hydroperoxides and thiobarbituric acid reactive substances (TBARS). Intracellular oxidative stress and antioxidant activity (catalase and superoxide dismutase) were measured after stimulation with oxLDLs. Cell viability and apoptosis were quantified using different assays (MTT, Annexin V staining, cytochrome C release, caspase 3 activation and TUNEL test). A. borbonica and D. apetalum displayed high levels of polyphenols and limited LDL oxidation as well as oxLDL-induced intracellular oxidative stress in endothelial cells. Polyphenol extracts of A. borbonica and D. apetalum exerted a protective effect against oxLDL-induced cell apoptosis in a dose-dependent manner (10, 25, and 50 µM GAE) similar to that observed for curcumin, used as positive control. All together, these results showed significant antioxidant and antiapoptotic properties for two plants of the Reunion Island pharmacopeia, A. borbonica and D. apetalum, suggesting their therapeutic potential to prevent cardiovascular diseases by limiting LDL oxidation and protecting the endothelium.

8.
Molecules ; 25(19)2020 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-33003608

RESUMO

Antirhea borbonica (A. borbonica) is an endemic plant from the Mascarene archipelago in the Indian Ocean commonly used in traditional medicine for its health benefits. This study aims (1) at exploring polyphenols profiles from two types of extracts-aqueous (herbal infusion) and acetonic (polyphenol rich) extracts from A. borbonica leaves-and (2) at evaluating their potential toxicity in vivo for the first time. We first demonstrated that, whatever type of extraction is used, both extracts displayed significant antioxidant properties and acid phenolic and flavonoid contents. By using selective liquid chromatography-tandem mass spectrometry, we performed polyphenol identification and quantification. Among the 19 identified polyphenols, we reported that the main ones were caffeic acid derivatives and quercetin-3-O-rutinoside. Then, we performed a Fish Embryo Acute Toxicity test to assess the toxicity of both extracts following the Organisation for Economic Cooperation and Development (OECD) guidelines. In both zebrafish embryos and larvae, the polyphenols-rich extract obtained by acetonic extraction followed by evaporation and resuspension in water exhibits a higher toxic effect with a median lethal concentration (LC50: 5.6 g/L) compared to the aqueous extract (LC50: 20.3 g/L). Our data also reveal that at non-lethal concentrations of 2.3 and 7.2 g/L for the polyphenol-rich extract and herbal infusion, respectively, morphological malformations such as spinal curvature, pericardial edema, and developmental delay may occur. In conclusion, our study strongly suggests that the evaluation of the toxicity of medicinal plants should be systematically carried out and considered when studying therapeutic effects on living organisms.


Assuntos
Fenóis/análise , Extratos Vegetais/química , Folhas de Planta/química , Plantas Medicinais/química , Polifenóis/análise , Rubiaceae/química , Testes de Toxicidade , Peixe-Zebra/embriologia , Animais , Antioxidantes/farmacologia , Embrião não Mamífero/anormalidades , Embrião não Mamífero/efeitos dos fármacos , Larva/efeitos dos fármacos , Fenóis/toxicidade , Polifenóis/toxicidade , Análise de Sobrevida
9.
Antioxidants (Basel) ; 9(10)2020 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-33036442

RESUMO

Background-Medicinal plants are traditionally used as infusions or decoctions for their antioxidant, anti-inflammatory, hypolipidemic and anti-diabetic properties. Purpose-The aim of the study was to define the polyphenol composition and to assess the antioxidant capacity of eight medicinal plants from Reunion Island referred to in the French Pharmacopeia, namely Aphloia theiformis, Ayapana triplinervis, Dodonaea viscosa, Hubertia ambavilla, Hypericum lanceolatum, Pelargonium x graveolens, Psiloxylon mauritianum and Syzygium cumini. Methods-Polyphenol content was assessed by biochemical assay and liquid chromatography coupled to mass spectrometry. Antioxidant capacity was assessed by measuring DPPH reduction and studying the protective effects of herbal preparation on red blood cells or preadipocytes exposed to oxidative stress. Results-Polyphenol content ranged from 25 to 143 mg gallic acid equivalent (GAE)/L for infusions and 35 to 205 mg GAE/L for decoctions. Liquid chromatography coupled to mass spectrometry analysis showed the presence of major bioactive polyphenols, such as quercetin, chlorogenic acid, procyanidin and mangiferin. Antioxidant capacity assessed by different tests, including DPPH and Human red blood cell (RBC) hemolysis of herbal preparations, demonstrated a dose-dependent effect whatever the extraction procedure. Our data suggest that decoction slightly improved polyphenol extraction as well as antioxidant capacity relative to the infusion mode of extraction (DPPH test). However, infusions displayed a better protective effect against oxidative stress-induced RBC hemolysis. Conclusion-Traditional preparations of medicinal plant aqueous extracts (infusions and decoctions) display antioxidant properties that limit oxidative stress in preadipocytes and red blood cells, supporting their use in the context of metabolic disease prevention and treatment.

10.
Sci Rep ; 10(1): 14496, 2020 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-32879342

RESUMO

Overweight and obesity are worldwide health concerns leading to many physiological disorders. Recent data highlighted their deleterious effects on brain homeostasis and plasticity, but the mechanisms underlying such disruptions are still not well understood. In this study, we developed and characterized a fast and reliable diet-induced overweight (DIO) model in zebrafish, for (1) studying the effects of overfeeding on brain homeostasis and for (2) testing different preventive and/or therapeutic strategies. By overfeeding zebrafish for 4 weeks, we report the disruption of many metabolic parameters reproducing human overweight features including increased body weight, body mass index, fasting blood glucose levels and liver steatosis. Furthermore, DIO fish displayed blood-brain barrier leakage, cerebral oxidative stress, neuroinflammation and decreased neurogenesis. Finally, we investigated the preventive beneficial effects of A. borbonica, an endogenous plant from Reunion Island. Overnight treatment with A. borbonica aqueous extract during the 4 weeks of overfeeding limited some detrimental central effects of DIO. In conclusion, we established a relevant DIO model in zebrafish demonstrating that overfeeding impairs peripheral and central homeostasis. This work also highlights the preventive protective effects of A. borbonica aqueous extracts in DIO, and opens a way to easily screen drugs aiming at limiting overweight and associated neurological disorders.


Assuntos
Peso Corporal/efeitos dos fármacos , Encéfalo/fisiologia , Homeostase , Neurogênese/efeitos dos fármacos , Sobrepeso/veterinária , Extratos Vegetais/farmacologia , Rubiaceae/química , Animais , Glicemia/metabolismo , Barreira Hematoencefálica , Índice de Massa Corporal , Modelos Animais de Doenças , Fígado Gorduroso/tratamento farmacológico , Feminino , Inflamação , Insulina/metabolismo , Resistência à Insulina , Masculino , Obesidade/tratamento farmacológico , Obesidade/veterinária , Sobrepeso/tratamento farmacológico , Oxirredução , Estresse Oxidativo , Peixe-Zebra
11.
Mol Nutr Food Res ; 64(13): e1900779, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32447828

RESUMO

SCOPE: Hyperglycemia alters cerebral endothelial cell and blood-brain barrier functions, aggravating cerebrovascular complications such as stroke during diabetes. Redox and inflammatory changes play a causal role. This study evaluates polyphenol protective effects in cerebral endothelial cells and a mouse stroke model during hyperglycemia. METHODS AND RESULTS: Murine bEnd.3 cerebral endothelial cells and a mouse stroke model are exposed to a characterized, polyphenol-rich extract of Antirhea borbonica or its predominant constituent caffeic acid, during hyperglycemia. Polyphenol effects on redox, inflammatory and vasoactive markers, infarct volume, and hemorrhagic transformation are determined. In vitro, polyphenols improve reactive oxygen species levels, Cu/Zn superoxide dismutase activity, and both NAPDH oxidase 4 and nuclear factor erythroid 2-related factor 2 (Nrf2) gene expression deregulated by high glucose. Polyphenols reduce Nrf2 nuclear translocation and counteract nuclear factor-ĸappa B activation, interleukin-6 secretion, and the altered production of vasoactive markers mediated by high glucose. In vivo, polyphenols reduce cerebral infarct volume and hemorrhagic transformation aggravated by hyperglycemia. Polyphenols attenuate redox changes, increase vascular endothelial-Cadherin production, and decrease neuro-inflammation in the infarcted hemisphere. CONCLUSION: Polyphenols protect against hyperglycemia-mediated alterations in cerebral endothelial cells and a mouse stroke model. It is relevant to assess polyphenol benefits to improve cerebrovascular damages during diabetes.


Assuntos
Antioxidantes/farmacologia , Infarto Cerebral/tratamento farmacológico , Hiperglicemia/fisiopatologia , Polifenóis/farmacologia , Acidente Vascular Cerebral/tratamento farmacológico , Animais , Glicemia/metabolismo , Barreira Hematoencefálica/química , Barreira Hematoencefálica/efeitos dos fármacos , Ácidos Cafeicos/farmacologia , Infarto Cerebral/patologia , Infarto Cerebral/fisiopatologia , Modelos Animais de Doenças , Células Endoteliais/efeitos dos fármacos , Hiperglicemia/tratamento farmacológico , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Plantas Medicinais/química , Polifenóis/química , Substâncias Protetoras/farmacologia , Traumatismo por Reperfusão/tratamento farmacológico , Traumatismo por Reperfusão/fisiopatologia , Rubiaceae/química , Acidente Vascular Cerebral/etiologia
12.
Free Radic Res ; 53(2): 150-169, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30821539

RESUMO

Advanced glycation end-products (AGEs) trigger multiple metabolic disorders in the vessel wall that may in turn lead to endothelial dysfunction. The molecular mechanisms by which AGEs generate these effects are not completely understood. Oxidative stress plays a key role in the development of deleterious effects that occur in endothelium during diabetes. Our main objectives were to further understand how AGEs contribute to reactive oxygen species (ROS) overproduction in endothelial cells and to evaluate the protective effect of an antioxidant plant extract. The human endothelial cell line EA.hy926 was treated with native or modified bovine serum albumin (respectively BSA and BSA-AGEs). To monitor free radicals formation, we used H2DCF-DA, dihydroethidium (DHE), DAF-FM-DA and MitoSOX Red dyes. To investigate potential sources of ROS, nicotinamide adenine dinucleotide phosphate (NADPH) oxidase and mitochondrial inhibitors were used. The regulation of different types of ROS by the polyphenol-rich extract from the medicinal plant Doratoxylon apetalum was also studied for a therapeutic perspective. BSA-AGEs exhibited not only less antioxidant properties than BSA, but also pro-oxidant effects. The degree of albumin glycoxidation directly influenced oxidative stress through a possible communication between NADPH oxidase and mitochondria. D. apetalum significantly decreased intracellular hydrogen peroxide and superoxide anions mainly detected by H2DCF-DA and DHE respectively. Our results suggest that BSA-AGEs promote a marked oxidative stress mediated at least by NADPH oxidase and mitochondria. D. apetalum plant extract appeared to be an effective antioxidant compound to protect endothelial cells.


Assuntos
Células Endoteliais/metabolismo , Produtos Finais de Glicação Avançada/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Homeostase , Humanos
13.
Pharmacol Res ; 119: 303-312, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28249816

RESUMO

In obesity, gut microbiota LPS may translocate into the blood stream and then contribute to adipose tissue inflammation and oxidative stress, leading to insulin resistance. A causal link between periodontal infection, obesity and type 2 diabetes has also been suggested. We evaluated the ability of polyphenols from Antirhea borbonica medicinal plant to improve the inflammatory and redox status of 3T3-L1 adipocytes exposed to LPS of Porphyromonas gingivalis periodontopathogen or Escherichia coli enterobacteria. Our results show that LPS enhanced the production of Toll-like receptor-dependent MyD88 and NFκB signaling factors as well as IL-6, MCP-1, PAI-1 and resistin. Plant polyphenols reduced LPS pro-inflammatory action. Concomitantly, polyphenols increased the production of adiponectin and PPARγ, known as key anti-inflammatory and insulin-sensitizing mediators. Moreover, both LPS increased intracellular ROS levels and the expression of genes encoding ROS-producing enzymes including NOX2, NOX4 and iNOS. Plant polyphenols reversed these effects and up-regulated MnSOD and catalase antioxidant enzyme gene expression. Noticeably, preconditioning of cells with caffeic acid, chlorogenic acid or kaempferol identified among A. borbonica major polyphenols, led to similar protective properties. Altogether, these findings demonstrate the anti-inflammatory and antioxidant effects of A. borbonica polyphenols on adipocytes, in response to P. gingivalis or E. coli LPS. It will be of major interest to assess A. borbonica polyphenol benefits against obesity-related metabolic disorders such as insulin resistance in vivo.


Assuntos
Adipócitos/efeitos dos fármacos , Anti-Inflamatórios/farmacologia , Antioxidantes/farmacologia , Escherichia coli/imunologia , Lipopolissacarídeos/imunologia , Polifenóis/farmacologia , Porphyromonas gingivalis/imunologia , Células 3T3-L1 , Adipócitos/imunologia , Adipócitos/microbiologia , Animais , Anti-Inflamatórios/química , Anti-Inflamatórios/isolamento & purificação , Antioxidantes/química , Antioxidantes/isolamento & purificação , Infecções por Bacteroidaceae/tratamento farmacológico , Infecções por Bacteroidaceae/imunologia , Infecções por Bacteroidaceae/microbiologia , Infecções por Escherichia coli/tratamento farmacológico , Infecções por Escherichia coli/imunologia , Infecções por Escherichia coli/microbiologia , Inflamação/tratamento farmacológico , Inflamação/imunologia , Inflamação/microbiologia , Camundongos , Estresse Oxidativo/efeitos dos fármacos , Plantas Medicinais/química , Polifenóis/química , Polifenóis/isolamento & purificação , Rubiaceae/química
14.
Thromb Haemost ; 108(3): 435-42, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22836558

RESUMO

Oxidative stress is involved in the chronic pathological vascular remodelling of both abdominal aortic aneurysm and occlusive atherosclerosis. Red blood cells (RBCs), leukocytes and platelets present in both, aneurysmal intraluminal thrombus and intraplaque haemorraghes, could be involved in the redox imbalance inside diseased arterial tissues. RBCs haemolysis may release the pro-oxidant haemoglobin (Hb), which transfers heme to tissue and low-density lipoproteins. Heme-iron potentiates molecular, cell and tissue toxicity mediated by leukocytes and other sources of reactive oxygen species (ROS). Polymorphonuclear neutrophils release myeloperoxidase and, along with activated platelets, produce superoxide mediated by NADPH oxidase, causing oxidative damage. In response to this pro-oxidant milieu, several antioxidant molecules of plasma or cell origin can prevent ROS production. Free Hb binds to haptoglobin (Hp) and once Hp-Hb complex is endocytosed by CD163, liberated heme is converted into less toxic compounds by heme oxygenase-1. Iron homeostasis is mainly regulated by transferrin, which transports ferric ions to other cells. Transferrin-bound iron is internalised via endocytosis mediated by transferrin receptor. Once inside the cell, iron is mainly stored by ferritin. Other non hemo-iron related antioxidant enzymes (e.g. superoxide dismutase, catalase, thioredoxin and peroxiredoxin) are also involved in redox modulation in vascular remodelling. Oxidative stress is a main determinant of chronic pathological remodelling of the arterial wall, partially linked to the presence of RBCs, leukocytes, platelets and oxidised fibrin within tissue and to the imbalance between pro-/anti-oxidant molecules. Understanding the complex mechanisms underlying redox imbalance could help to define novel potential targets to decrease atherothrombotic risk.


Assuntos
Plaquetas/metabolismo , Eritrócitos/metabolismo , Leucócitos/metabolismo , Estresse Oxidativo , Animais , Antígenos CD/sangue , Antígenos de Diferenciação Mielomonocítica/sangue , Antioxidantes/uso terapêutico , Aneurisma da Aorta Abdominal/sangue , Aneurisma da Aorta Abdominal/tratamento farmacológico , Aterosclerose/sangue , Aterosclerose/tratamento farmacológico , Catalase/sangue , Terapia por Quelação , Endotélio Vascular/metabolismo , Endotélio Vascular/patologia , Haptoglobinas/metabolismo , Heme/metabolismo , Heme Oxigenase-1/sangue , Humanos , Ferro/sangue , Peroxidase/sangue , Peroxirredoxinas/sangue , Ativação Plaquetária , Espécies Reativas de Oxigênio/metabolismo , Receptores de Superfície Celular/sangue , Explosão Respiratória , Superóxido Dismutase/sangue , Tiorredoxinas/sangue
15.
J Gene Med ; 6(10): 1112-24, 2004 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-15386736

RESUMO

BACKGROUND: Syngeneic vascular cells are interesting tools for indirect gene therapy in the cardiovascular system. This study aims to optimize transfection conditions of primary cultures of vascular smooth muscle cells (VSMCs) using different non-viral vectors and zinc as an adjuvant and to implant these transfected cells in vivo. METHODS: Non-liposomal cationic vectors (FuGene 6), polyethylenimines (ExGen 500), and histidylated polylysine (HPL) were used as non-viral vectors in vitro with secreted alkaline phosphatase (SEAP) as reporter gene. Transfection efficiency was compared in cultured rat, rabbit and human VSMCs and fibroblasts. Zinc chloride (ZnCl2) was added to optimize transfection of rat VSMCs in vitro which were then seeded in vivo. RESULTS: Much higher SEAP levels were obtained in rabbit cells with FuGene 6 (p <0.0001) at day 2 than in equivalent rat and human cells. Rat VSMCs transfected in vitro with FuGene 6 and ExGen 500 expressed higher SEAP levels than with HPL. In rat VSMCs, SEAP secretion was more than doubled by addition of 250 microM ZnCl2 (p <0.0001) for all vectors. Seeding of syngeneic VSMCs transfected under optimized conditions (FuGene 6/pcDNA3-SEAP +250 microM ZnCl2) into healthy Lewis rats using various routes or into post-infarct myocardial scar resulted in a peak of SEAP expression at day 2 and detectable activity in the plasma for at least 8 days. CONCLUSIONS: FuGene 6 is an efficient non-viral transfection reagent for gene transfer in somatic smooth muscle cells in vitro and ZnCl2 enhances its efficiency. This increased expression of the transgene product is maintained after seeding in vivo.


Assuntos
Terapia Genética , Vetores Genéticos , Fosfatase Alcalina/metabolismo , Animais , Aorta/metabolismo , Cátions , Sobrevivência Celular , Células Cultivadas , Cloretos/química , Cloretos/metabolismo , Cloretos/farmacologia , Relação Dose-Resposta a Droga , Fibroblastos/metabolismo , Genes Reporter , Humanos , Miócitos de Músculo Liso/citologia , Plasmídeos/metabolismo , Polietilenoimina/metabolismo , Polilisina/química , Coelhos , Ratos , Ratos Endogâmicos Lew , Fatores de Tempo , Transfecção , Zinco/química , Compostos de Zinco/química , Compostos de Zinco/metabolismo , Compostos de Zinco/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA