Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
BMC Plant Biol ; 23(1): 168, 2023 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-36997867

RESUMO

BACKGROUND: Drought is one of the main reasons for low phosphorus (P) solubility and availability. AIMS: The use of low P tolerant cotton genotypes might be a possible option to grow in drought conditions. METHODS: This study investigates the tolerance to drought stress in contrasting low P-tolerant cotton genotypes (Jimian169; strong tolerant to low P and DES926; weak tolerant to low P). In hydroponic culture, the drought was artificially induced with 10% PEG in both cotton genotypes followed by low (0.01 mM KH2PO4) and normal (1 mM KH2PO4) P application. RESULTS: The results showed that under low P, PEG-induced drought greatly inhibited growth, dry matter production, photosynthesis, P use efficiency, and led to oxidative stress from excessive malondialdehyde (MDA) and higher accumulation of reactive oxygen species (ROS), and these effects were more in DES926 than Jimian169. Moreover, Jimian169 alleviated oxidative damage by improving the antioxidant system, photosynthetic activities, and an increase in the levels of osmoprotectants like free amino acids, total soluble proteins, total soluble sugars, and proline. CONCLUSIONS: The present study suggests that the low P-tolerant cotton genotype can tolerate drought conditions through high photosynthesis, antioxidant capacity, and osmotic adjustment.


Assuntos
Antioxidantes , Secas , Antioxidantes/metabolismo , Estresse Oxidativo , Genótipo , Fósforo , Estresse Fisiológico/genética
2.
Plant Physiol Biochem ; 196: 302-317, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36738510

RESUMO

Phosphorus (P) is an essential nutrient controlling plant growth and development through the regulation of basic metabolic processes; however, the molecular details of these pathways remain largely unknown. In this study, physiological, transcriptome, and metabolome analysis were compared for two cotton genotypes with different low P tolerance under P starvation and resupply. The results showed that the glucose, fructose, sucrose, and starch contents increased by 18.2%, 20.4%, 20.2%, and 14.3% in the roots and 18.3%, 23.3%, 11.0%, and 13.6% in the shoot of Jimian169 than DES926, respectively. Moreover, the activities of enzymes related to carbon and phosphorus metabolism were higher in the roots and shoots of Jimian169 than DES926. In addition, transcriptome analysis revealed that the number of differentially expressed genes (DEGs) was higher in both roots (830) and shoots (730) under P starvation and the DEGs drastically reduced upon P resupply. The KEGG analysis indicated that DEGs were mainly enriched in phenylpropanoid biosynthesis, carbon metabolism, and photosynthesis. The metabolome analysis showed the enrichment of phenylpropanoid, organic acids and derivatives, and lipids in all the pairs at a given time point. The combined transcriptome and metabolome analysis revealed that carbon metabolism and flavonoid biosynthesis are involved in the P starvation response in cotton. Moreover, co-expression network analysis identified 3 hub genes in the roots and shoots that regulate the pathways involved in the P starvation response. This study provides the foundation for understanding the mechanisms of low P tolerance and the hub genes as a potential target for the development of low P tolerant genotypes.


Assuntos
Carbono , Transcriptoma , Carbono/metabolismo , Perfilação da Expressão Gênica , Metaboloma/fisiologia , Flavonoides/metabolismo , Fósforo/metabolismo , Regulação da Expressão Gênica de Plantas
3.
BMC Plant Biol ; 23(1): 97, 2023 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-36792994

RESUMO

Low phosphorus (P) is one of the limiting factors in sustainable cotton production. However, little is known about the performance of contrasting low P tolerant cotton genotypes that might be a possible option to grow in low P condition. In the current study, we characterized the response of two cotton genotypes, Jimian169 a strong low P tolerant, and DES926 a weak low P tolerant genotypes under low and normal P conditions. The results showed that low P greatly inhibited growth, dry matter production, photosynthesis, and enzymatic activities related to antioxidant system and carbohydrate metabolism and the inhibition was more in DES926 as compared to Jimian169. In contrast, low P improved root morphology, carbohydrate accumulation, and P metabolism, especially in Jimian169, whereas the opposite responses were observed for DES926. The strong low P tolerance in Jimian169 is linked with a better root system and enhanced P and carbohydrate metabolism, suggesting that Jimian169 is a model genotype for cotton breeding. Results thus indicate that the Jimian169, compared with DES926, tolerates low P by enhancing carbohydrate metabolism and by inducing the activity of several enzymes related to P metabolism. This apparently causes rapid P turnover and enables the Jimian169 to use P more efficiently. Moreover, the transcript level of the key genes could provide useful information to study the molecular mechanism of low P tolerance in cotton.


Assuntos
Fósforo , Melhoramento Vegetal , Fósforo/metabolismo , Metabolismo dos Carboidratos , Fotossíntese , Genótipo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA