Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Revista
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Small ; 19(30): e2300217, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37021733

RESUMO

Hepatic ischemia-reperfusion injury (HIRI) is a critical complication after liver surgery that negatively affects surgical outcomes of patients with the end-stage liver-related disease. Reactive oxygen species (ROS) are responsible for the development of ischemia-reperfusion injury and eventually lead to hepatic dysfunction. Selenium-doped carbon quantum dots (Se-CQDs) with an excellent redox-responsive property can effectively scavenge ROS and protect cells from oxidation. However, the accumulation of Se-CQDs in the liver is extremely low. To address this concern, the fabrication of Se-CQDs-lecithin nanoparticles (Se-LEC NPs) is developed through self-assembly mainly driven by the noncovalent interactions. Lecithin acting as the self-assembly building block also makes a pivotal contribution to the therapeutic performance of Se-LEC NPs due to its capability to react with ROS. The fabricated Se-LEC NPs largely accumulate in the liver, effectively scavenge ROS and inhibit the release of inflammatory cytokines, thus exerting beneficial therapeutic efficacy on HIRI. This work may open a new avenue for the design of self-assembled Se-CQDs NPs for the treatment of HIRI and other ROS-related diseases.


Assuntos
Pontos Quânticos , Traumatismo por Reperfusão , Selênio , Humanos , Antioxidantes/farmacologia , Espécies Reativas de Oxigênio , Carbono , Lecitinas , Fígado , Traumatismo por Reperfusão/tratamento farmacológico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA