Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Invest Ophthalmol Vis Sci ; 60(5): 1706-1713, 2019 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-31013343

RESUMO

Purpose: Ocular pain and discomfort are the most defining symptoms of dry eye disease. We determined the ability of topical progesterone to affect corneal sensitivity and brainstem processing of nociceptive inputs. Methods: Progesterone or vehicle gel was applied to the shaved forehead in male Sprague Dawley rats. As a site control, gel also was applied to the cheek on the side contralateral to corneal stimulation. Corneal mechanical thresholds were determined using the Cochet-Bonnet esthesiometer in intact and lacrimal gland excision-induced dry eye animals. Eye wipe behaviors in response to hypertonic saline and capsaicin were examined, and corneal mustard oil-induced c-Fos immunohistochemistry was quantified in the brainstem spinal trigeminal nucleus. Results: Progesterone gel application to the forehead, but not the contralateral cheek, increased corneal mechanical thresholds in intact and lacrimal gland excision animals beginning <30 minutes after treatment. Subcutaneous injection of the local anesthetic bupivacaine into the forehead region before application of progesterone prevented the increase in corneal mechanical thresholds. Furthermore, progesterone decreased capsaicin-evoked eye wipe behavior in intact animals and hypertonic saline evoked eye wipe behavior in dry eye animals. The number of Fos-positive neurons located in the caudal region of the spinal trigeminal nucleus after corneal mustard oil application was reduced in progesterone-treated animals. Conclusions: Results from this study indicate that progesterone, when applied to the forehead, produces analgesia as indicated by increased corneal mechanical thresholds and decreased nociceptive responses to hypertonic saline and capsaicin.


Assuntos
Analgésicos/administração & dosagem , Doenças da Córnea/prevenção & controle , Síndromes do Olho Seco/complicações , Dor Ocular/prevenção & controle , Testa , Progesterona/administração & dosagem , Progestinas/administração & dosagem , Animais , Fenômenos Biomecânicos/fisiologia , Capsaicina/administração & dosagem , Córnea/fisiopatologia , Doenças da Córnea/etiologia , Doenças da Córnea/fisiopatologia , Modelos Animais de Doenças , Dor Ocular/etiologia , Dor Ocular/fisiopatologia , Regulação da Expressão Gênica/fisiologia , Genes fos/genética , Masculino , Mostardeira , Neurônios/fisiologia , Medição da Dor , Óleos de Plantas/administração & dosagem , Ratos , Ratos Sprague-Dawley
2.
Nature ; 427(6971): 260-5, 2004 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-14712238

RESUMO

Wasabi, horseradish and mustard owe their pungency to isothiocyanate compounds. Topical application of mustard oil (allyl isothiocyanate) to the skin activates underlying sensory nerve endings, thereby producing pain, inflammation and robust hypersensitivity to thermal and mechanical stimuli. Despite their widespread use in both the kitchen and the laboratory, the molecular mechanism through which isothiocyanates mediate their effects remains unknown. Here we show that mustard oil depolarizes a subpopulation of primary sensory neurons that are also activated by capsaicin, the pungent ingredient in chilli peppers, and by Delta(9)-tetrahydrocannabinol (THC), the psychoactive component of marijuana. Both allyl isothiocyanate and THC mediate their excitatory effects by activating ANKTM1, a member of the TRP ion channel family recently implicated in the detection of noxious cold. These findings identify a cellular and molecular target for the pungent action of mustard oils and support an emerging role for TRP channels as ionotropic cannabinoid receptors.


Assuntos
Canais de Cálcio/metabolismo , Canabinoides/farmacologia , Mostardeira , Proteínas do Tecido Nervoso/metabolismo , Neurônios Aferentes/efeitos dos fármacos , Óleos de Plantas/farmacologia , Canais de Potencial de Receptor Transitório/metabolismo , Animais , Animais Recém-Nascidos , Anquirinas , Canais de Cálcio/genética , Sinalização do Cálcio/efeitos dos fármacos , Capsaicina/farmacologia , Carbacol/farmacologia , Células Cultivadas , Clonagem Molecular , Dronabinol/farmacologia , Humanos , Proteínas do Tecido Nervoso/genética , Neurônios Aferentes/metabolismo , Nociceptores , Oócitos/efeitos dos fármacos , Oócitos/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ratos , Ratos Sprague-Dawley , Canal de Cátion TRPA1 , Canais de Cátion TRPC , Tapsigargina/farmacologia , Canais de Potencial de Receptor Transitório/genética , Gânglio Trigeminal
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA