Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Nat Med ; 78(3): 474-487, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38431911

RESUMO

Lupus nephritis (LN) is a kidney disease that occurs after systemic lupus erythematosus (SLE) affects the kidneys. Pentraxin 3 (PTX3) is highly expressed in the serum of patients with LN. Renal PTX3 deposition is directly related to clinical symptoms such as proteinuria and inflammation. The excessive proliferation of mesangial cells (MCs) is one of the representative pathological changes in the progression of LN, which is closely related to its pathogenesis. Protopanaxadiol (PPD) is the main component of ginsenoside metabolism and has not been reported in LN. The aim of this study was to investigate the relationship between PTX3 and mesangial cell proliferation and to evaluate the potential role and mechanism of PPD in improving LN. PTX3 is highly expressed in the kidneys of LN patients and LN mice and is positively correlated with renal pathological indicators, including proteinuria and PCNA. The excessive expression of PTX3 facilitated the proliferation of MCs, facilitated the activation of the MAPK/ERK1/2 signaling pathway, and increased the expression of HIF-1α. Further studies showed that PPD can effectively inhibit the abnormal proliferation of MCs with high expression of PTX3 and significantly improve LN symptoms such as proteinuria in MRL/lpr mice. The mechanism may be related to the inhibition of the PTX3/MAPK/ERK1/2 pathway. In this study, both in vitro, in vivo, and clinical sample results show that PTX3 is involved in the regulation of MCs proliferation and the early occurrence of LN. Natural active compound PPD can improve LN by regulating the PTX3/MAPK/ERK1/2 pathway.


Assuntos
Proteína C-Reativa , Nefrite Lúpica , Sistema de Sinalização das MAP Quinases , Sapogeninas , Componente Amiloide P Sérico , Nefrite Lúpica/tratamento farmacológico , Nefrite Lúpica/metabolismo , Animais , Sapogeninas/farmacologia , Proteína C-Reativa/metabolismo , Camundongos , Humanos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Feminino , Componente Amiloide P Sérico/metabolismo , Proliferação de Células/efeitos dos fármacos , Adulto , Masculino , Camundongos Endogâmicos MRL lpr , Rim/efeitos dos fármacos , Rim/metabolismo , Rim/patologia
2.
BMC Pharmacol Toxicol ; 23(1): 83, 2022 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-36289546

RESUMO

BACKGROUND: Toxicological problem associated with herbal medicine is a significant public health problem. Hence, it is necessary to elaborate on the safety of herbal medicine. Salvianolic acid A (SAA) is a major active compound isolated from Danshen, a popular herbal drug and medicinal food plant in China. The aim of the present study was to explore the toxicological profile of SAA. METHODS: The acute toxicity studies were performed in mice and Beagle dogs with single administration with SAA. A 4-week subchronic toxicity was test in dogs. SAA was intravenously administered at doses of 20, 80 and 300 mg/kg. Clinical observation, laboratory testing and necropsy and histopathological examination were performed. The genotoxic potential of SAA was evaluated by 2 types of genotoxicity tests: a reverse mutation test in bacteria and bone marrow micronucleus test in mice. RESULTS: In acute toxicities, the LD50 of SAA is 1161.2 mg/kg in mice. The minimum lethal dose (MLD) and maximal non-lethal dose (MNLD) of SAA were 682 mg/kg and 455 mg/kg in dogs, respectively. The approximate lethal dose range was 455-682 mg/kg. In the study of 4-week repeated-dose toxicity in dogs, focal necrosis in liver and renal tubular epithelial cell, the decrease in relative thymus weight, as well as abnormal changes in biochemical parameters, were observed in SAA 80 or 300 mg/kg group. The no observed adverse effect level (NOAEL) of SAA was 20 mg/kg. Thymus, liver and kidneys were the toxic targets. These toxic effects were transient and reversible. These results indicated that it should note examination of liver and kidney function during the administration of SAA in clinic. Furthermore, SAA had no mutagenic effect at any tested doses. CONCLUSION: These results provide new toxicological information of SAA for its clinical application and functional food consumption.


Assuntos
Ácidos Cafeicos , Lactatos , Camundongos , Animais , Cães , Nível de Efeito Adverso não Observado , Dano ao DNA , Testes de Mutagenicidade
3.
Integr Cancer Ther ; 15(3): 368-75, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-26699805

RESUMO

Objective Both the Chinese herbal compound Songyou Yin (SYY) and swimming exercise have been shown to have protective effects against liver cancer in animal models. In this study, we investigated whether SYY and moderate swimming (MS) have enhanced effect on suppressing progression of liver cancer by immunomodulation. Methods C57BL/6 mice were transplanted with Hepa1-6 murine liver cancer cell lines and received treatment with SYY alone or SYY combined with MS. The green fluorescent protein (GFP)-positive metastatic foci in lungs were imaged with a stereoscopic fluorescence microscope. Flow cytometry was used to test the proportion of CD4 +, CD8 + T cells in peripheral blood and the proportions of CD4 + CD25 + Foxp3 + Treg cells in peripheral blood, spleen, and tumor tissues. Cytokine transforming growth factor (TGF)-ß1 level in serum was detected by ELISA. Results SYY plus MS significantly suppressed the growth and lung metastasis of liver cancer and prolonged survival in tumor-burdened mice. SYY plus MS markedly raised the CD4 to CD8 ratio in peripheral blood and lowered the serum TGF-ß1 level and the proportions of Treg cells in peripheral blood, spleen, and tumor tissue. The effects of the combined intervention were significantly superior to SYY or MS alone. Conclusion The combined application of SYY and MS exerted an enhanced effect on suppressing growth and metastasis of liver cancer by strengthening immunity.


Assuntos
Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/imunologia , Medicamentos de Ervas Chinesas/farmacologia , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/imunologia , Natação/fisiologia , Animais , Carcinoma Hepatocelular/metabolismo , Linhagem Celular Tumoral , Citocinas/imunologia , Citocinas/metabolismo , Citometria de Fluxo/métodos , Neoplasias Hepáticas/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Linfócitos T Reguladores/efeitos dos fármacos , Linfócitos T Reguladores/imunologia , Linfócitos T Reguladores/metabolismo , Fator de Crescimento Transformador beta1/imunologia , Fator de Crescimento Transformador beta1/metabolismo , Carga Tumoral/efeitos dos fármacos , Carga Tumoral/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA