Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Phytother Res ; 35(5): 2807-2823, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33484196

RESUMO

Caulis Lonicerae, the dried stem of Lonicera japonica, has been confirmed to have antiinflammatory and antioxidant therapeutic effects. In the present study, we aimed to evaluate the functional mechanism of glycosides extracted from Caulis Lonicerae on the inflammatory proliferation of interleukin-1 beta (IL-1ß)-mediated fibroblast-like synoviocytes (FLSs) from rats. Rat FLSs (RSC-364) co-cultured with lymphocytes induced by IL-1ß were used as a cell model. Glycosides in a freeze-dried powder of aqueous extract from Caulis Lonicerae were identified using high-performance liquid chromatography-electrospray ionization/mass spectrometry. After treatment with glycosides, the inflammatory proliferation of FLS, induced by IL-1ß, decreased significantly. Flow cytometry analysis showed that treatment with glycosides restored the abnormal balance of T cells by intervening in the proliferation and differentiation of helper T (Th) cells. Glycosides also inhibited the activation of Janus kinase signal transducer and activator of transcription (JAK-STAT) and nuclear factor (NF)-κB signaling pathways by suppressing the protein expression of key molecules in these pathways. Therefore, we concluded that the glycosides of Caulis Lonicerae can intervene in the differentiation of Th cells, suppressing the activation of JAK-STAT and NF-κB signaling pathways, contributing to the inhibitory effect on inflammatory proliferation of FLS co-cultured with lymphocytes induced by pro-inflammatory cytokines.

2.
PLoS One ; 15(7): e0236433, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32706801

RESUMO

Coptidis alkaloids are the primary active components of Coptis chinensis Franch. Clinical and pharmacodynamic studies have confirmed that Coptidis alkaloids have multiple therapeutic effects including anti-inflammatory, antioxidant and antitumor effects, and they are usually used to treat various inflammatory disorders and related diseases. Mouse bone marrow cells (BMCs) were isolated from BALB/c mice. Immune-mediated destruction of BMCs was induced by interferon (IFN) -γ. High-performance liquid chromatography-electrospray ionization/ mass spectrometry was used to analyze the ingredients of the aqueous extract from Coptis chinensis Franch. The results confirmed that Coptidis alkaloids were the predominant ingredients in the aqueous extract from Coptis chinensis. The functional mechanism of Coptidis alkaloids in inhibiting immune-mediated destruction of BMCs was studied in vitro. After Coptidis alkaloid treatment, the percentages of apoptotic BMCs and the proliferation and differentiation of helper T (Th) cells and regulatory T (Treg) cells were measured by flow cytometry. The expression and distribution of T-bet in BMCs were observed by immunofluorescence. Western blotting analysis was used to assay the expression of key molecules in the Fas apoptosis and Jak/Stats signaling pathways in BMCs. We identified five alkaloids in the aqueous extract of Coptis chinensis. The apoptotic ratios of BMCs induced by IFN-γ were decreased significantly after Coptidis alkaloid treatment. The levels of key molecules (Fas, Caspase-3, cleaved Caspase-3, Caspase-8 and Caspase-8) in Fas apoptosis signaling pathways also decreased significantly after treatment with low concentrations of Coptidis alkaloids. Coptidis alkaloids were also found to inhibit the proliferation of Th1 and Th17 cells and induce the differentiation of Th2 and Treg cells; further, the distribution of T-bet in BMCs was decreased significantly. In addition, the levels of Stat-1, phospho-Stat-1 and phospho-Stat-3 were also reduced after Coptidis alkaloid treatment. These results indicate that Coptidis alkaloids extracted by water decoction from Coptis chinensis Franch could inhibit the proliferation and differentiation of T lymphocytes, attenuate the apoptosis of BMCs, and suppress the immune-mediated destruction of the BMCs induced by pro-inflammatory cytokines.


Assuntos
Alcaloides/farmacologia , Células da Medula Óssea/efeitos dos fármacos , Coptis/metabolismo , Extratos Vegetais/farmacologia , Linfócitos T Auxiliares-Indutores/efeitos dos fármacos , Linfócitos T Reguladores/efeitos dos fármacos , Animais , Anti-Inflamatórios/farmacologia , Antioxidantes/farmacologia , Apoptose/efeitos dos fármacos , Células da Medula Óssea/patologia , Diferenciação Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Citocinas/imunologia , Medicamentos de Ervas Chinesas/farmacologia , Camundongos , Camundongos Endogâmicos BALB C , Linfócitos T Auxiliares-Indutores/patologia , Linfócitos T Reguladores/patologia
3.
BMC Complement Altern Med ; 19(1): 356, 2019 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-31818289

RESUMO

BACKGROUND: Radix Astragali and Radix Angelicae Sinensis are two herbs that compose Danggui Buxue Tang (an herbal formula for treatment of anemia diseases). In this study, we explored the molecular mechanism and effective targets to immune destruction of bone marrow (BM) cells treated with Radix Astragali, Radix Angelicae Sinensis or a combination of two agents. The potential synergic advantages of two herbs should also be explored. METHODS: The constituents of Radix Astragali and Radix Angelicae Sinensis were analyzed by high performance liquid chromatography-electrospray ionization/mass spectrometer system BM cells were separated from limbs of BALB/c mice, and immune destruction was induced with IFN-γ. The percentages of hematopoietic stem cells (HSCs) and CD3+ T cells were detected by flow cytometry. The distribution of T-bet and changes in the combination of SAP and SLAM in BM cells were observed by immunofluorescence. Western blotting was used to assay the expression of key molecules of the eIF2 signaling pathway in BM cells. RESULTS: Seven constituents of Radix Astragali and six constituents of Radix Angelicae Sinensis were identified. The percentages of HSCs increased significantly after treatment with Radix Angelicae Sinensis, especially at high concentrations. The percentages of CD3+ T cells were significantly decreased after Radix Astragali and Radix Angelicae Sinensis treatment. However, the synergistic function of two-herb combinations was superior to that of the individual herbs alone. The distribution of T-bet in BM cells was decreased significantly after Radix Angelicae Sinensis treatment. The number of SLAM/SAP double-stained cells was increased significantly after Radix Astragali treatment at low concentrations. The phosphorylation levels of eIF2α were also reduced after Radix Astragali and Radix Angelicae Sinensis treatment. CONCLUSIONS: Radix Astragali and Radix Angelicae Sinensis could intervene in the immunologic balance of T lymphocytes, inhibit the apoptosis of BM cells induced by immune attack, restore the balance of the T cell immune response network and recover the hematopoietic function of HSCs. The synergistic effects of Radix Astragali and Radix Angelicae Sinensis were superior to those of each herb alone.


Assuntos
Angelica sinensis , Astrágalo , Medicamentos de Ervas Chinesas/farmacologia , Hematopoese/efeitos dos fármacos , Interferon gama/farmacologia , Animais , Células da Medula Óssea/citologia , Células da Medula Óssea/efeitos dos fármacos , Células Cultivadas , Feminino , Camundongos , Camundongos Endogâmicos BALB C , Transdução de Sinais/efeitos dos fármacos
4.
Ann Bot ; 108(4): 637-46, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21193481

RESUMO

BACKGROUND: For the Solanaceae-type self-incompatibility, also possessed by Rosaceae and Plantaginaceae, the specificity of self/non-self interactions between pollen and pistil is controlled by two polymorphic genes at the S-locus: the S-locus F-box gene (SLF or SFB) controls pollen specificity and the S-RNase gene controls pistil specificity. SCOPE: This review focuses on the work from the authors' laboratory using Petunia inflata (Solanaceae) as a model. Here, recent results on the identification and functional studies of S-RNase and SLF are summarized and a protein-degradation model is proposed to explain the biochemical mechanism for specific rejection of self-pollen tubes by the pistil. CONCLUSIONS: The protein-degradation model invokes specific degradation of non-self S-RNases in the pollen tube mediated by an SLF, and can explain compatible versus incompatible pollination and the phenomenon of competitive interaction, where SI breaks down in pollen carrying two different S-alleles. In Solanaceae, Plantaginaceae and subfamily Maloideae of Rosaceae, there also exist multiple S-locus-linked SLF/SFB-like genes that potentially function as the pollen S-gene. To date, only three such genes, all in P. inflata, have been examined, and they do not function as the pollen S-gene in the S-genotype backgrounds tested. Interestingly, subfamily Prunoideae of Rosaceae appears to possess only a single SLF/SFB gene, and competitive interaction, observed in Solanaceae, Plantaginaceae and subfamily Maloideae, has not been observed. Thus, although the cytotoxic function of S-RNase is an integral part of SI in Solanaceae, Plantaginaceae and Rosaceae, the function of SLF/SFB may have diverged. This highlights the complexity of the S-RNase-based SI mechanism. The review concludes by discussing some key experiments that will further advance our understanding of this self/non-self discrimination mechanism.


Assuntos
Petunia/enzimologia , Petunia/fisiologia , Ribonucleases/metabolismo , Autoincompatibilidade em Angiospermas/fisiologia , Especificidade de Órgãos , Proteínas de Plantas/metabolismo , Pólen/metabolismo
5.
Sex Plant Reprod ; 22(4): 263-75, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-20033448

RESUMO

The specificity of S-RNase-based self-incompatibility (SI) is controlled by two S-locus genes, the pistil S-RNase gene and the pollen S-locus-F-box gene. S-RNase is synthesized in the transmitting cell; its signal peptide is cleaved off during secretion into the transmitting tract; and the mature "S-RNase", the subject of this study, is taken up by growing pollen tubes via an as-yet unknown mechanism. Upon uptake, S-RNase is sequestered in a vacuolar compartment in both non-self (compatible) and self (incompatible) pollen tubes, and the subsequent disruption of this compartment in incompatible pollen tubes correlates with the onset of the SI response. How the S-RNase-containing compartment is specifically disrupted in incompatible pollen tubes, however, is unknown. Here, we circumvented the uptake step of S-RNase by directly expressing S(2)-RNase, S(3)-RNase and non-glycosylated S(3)-RNase of Petunia inflata, with green fluorescent protein (GFP) fused at the C-terminus of each protein, in self (incompatible) and non-self (compatible) pollen of transgenic plants. We found that none of these ectopically expressed S-RNases affected the viability or the SI behavior of their self or non-self-pollen/pollen tubes. Based on GFP fluorescence of in vitro-germinated pollen tubes, all were sequestered in both self and non-self-pollen tubes. Moreover, the S-RNase-containing compartment was dynamic in living pollen tubes, with movement dependent on the actin-myosin-based molecular motor system. All these results suggest that glycosylation is not required for sequestration of S-RNase expressed in pollen tubes, and that the cytosol of pollen is the site of the cytotoxic action of S-RNase in SI.


Assuntos
Expressão Gênica , Petunia/enzimologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Ribonucleases/genética , Ribonucleases/metabolismo , Glicosilação , Petunia/genética , Petunia/fisiologia , Pólen/enzimologia , Pólen/genética , Pólen/fisiologia , Polinização , Transporte Proteico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA