Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Métodos Terapêuticos e Terapias MTCI
Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Eur J Biochem ; 217(1): 377-86, 1993 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-8223576

RESUMO

cDNA clones encoding the precursor of the T protein of the glycine decarboxylase complex have been isolated from a pea leaf cDNA library in lambda gt11. The longest cDNA insert of 1430 bp encodes a polypeptide of 408 amino acid residues of which 30 residues constitute an N-terminal cleavable presequence and 378 residues make up the mature protein. Several results confirmed the identity of the cDNA and the exactness of the predicted primary structure. Firstly, we purified the T protein to homogeneity and its mass was measured by mass spectrometry. The mass obtained (40966 +/- 5 Da) was the value predicted from the cDNA (40961 Da). Secondly, the purified T protein was chemically cleaved with cyanogen bromide and the peptide fragments were analysed by high-performance liquid chromatography/electrospray ionization mass spectrometry and/or fast-atom-bombardment mass spectrometry. The mass values of all the peptides generated by chemical cleavage and measured by these techniques were very close to the values calculated from the predicted primary structure. Thirdly, microsequencing of some of these peptides, which represent 35% of the total protein, fits perfectly with the primary structure deduced from the cDNA. In the present HPLC/electrospray ionization MS studies we never detected the presence of covalently bound tetrahydropteroylpolyglutamate (H4PteGlun), either in the native T protein or in the different peptide fragments generated by the chemical cleavage. The absence of H4PteGlun bound to the T protein in our experimental conditions demonstrates that H4PteGlun is not covalently linked to the T protein. Northern blot analysis showed that the steady-state level of the mRNA corresponding to the T protein was high in green leaves compared to the level in etiolated leaves (approximately 8-10-fold higher). Surprisingly, a non-negligible amount of mRNA corresponding to the T protein was present in roots whereas the mRNA encoding the H protein was not detectable. Western blot analysis showed that the P, L and T proteins of the glycine decarboxylase complex were present in roots whereas the H protein was not detectable. Southern hybridization to pea genomic DNA indicated the presence of a single gene encoding the T protein of the glycine decarboxylase complex in the haploid genome.


Assuntos
Clonagem Molecular , Hidroximetil e Formil Transferases , Espectrometria de Massas , Plantas/enzimologia , Transferases , Sequência de Aminoácidos , Aminometiltransferase , Sequência de Bases , Southern Blotting , Cromatografia Líquida de Alta Pressão , Brometo de Cianogênio , DNA Complementar/química , DNA Complementar/isolamento & purificação , Fabaceae/genética , Dados de Sequência Molecular , Plantas Medicinais , Conformação Proteica , RNA Mensageiro/análise , Mapeamento por Restrição , Homologia de Sequência de Aminoácidos , Distribuição Tecidual , Transferases/análise , Transferases/química , Transferases/genética
2.
Biol Mass Spectrom ; 22(8): 447-56, 1993 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-8357858

RESUMO

A purified extract of H-protein, a subunit of the glycine cleavage complex of the pea leaf mitochondria, was investigated by liquid chromatography/mass spectrometry (LC/MS) and liquid chromatography/tandem mass spectrometry (LC/MS/MS), using both continuous flow fast atom bombardment (CF-FAB) and electrospray ionization (ESI) mass spectrometry. Determination of the molecular weight of the entire protein, a 14 kDa subunit of the glycine decarboxylase complex, was achieved by ESI mass spectrometry and revealed covalent binding of the protein to the stabilizing agent beta-mercapto-ethanol. On-line LC/MS analysis of peptides arising from the endoproteinase Glu-C digestion of the H-protein was achieved using capillary columns (0.25 mm i.d.), and permitted confirmation of the previously reported sequence deduced from cDNA cloning experiments. The detailed interpretation of data extracted from these LC/MS experiments facilitated identification of peptides containing modified amino acid residues. In particular the identification of a lipoic acid cofactor, a rather unusual modified lysine residue which interacts with different active sites in the enzyme complex, was achieved using both LC/CF-FAB-MS and LC/ESI-MS. The exact location of this modified lysine residue was determined by obtaining fragment spectra of multiply protonated precursor ions of selected peptides, using on-line LC/MS/MS techniques.


Assuntos
Aminoácido Oxirredutases , Proteínas de Transporte/química , Plantas/química , Ácido Tióctico/análise , Cromatografia Líquida , Fabaceae , Complexo Glicina Descarboxilase , Proteína H do Complexo Glicina Descarboxilase , Glicina Desidrogenase (Descarboxilante) , Espectrometria de Massas , Plantas Medicinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA