Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Peptides ; 136: 170444, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33245952

RESUMO

VGF is a peptide precursor expressed in neuroendocrine cells that is suggested to play a role in the regulation of energy homeostasis. VGF is proteolytically cleaved to yield multiple bioactive peptides. However, the specific actions of VGF-derived peptides on energy homeostasis remain unclear. The aim of the present work was to investigate the role of VGF-derived peptides in energy homeostasis and explore the pharmacological actions of VGF-derived peptides on body weight in preclinical animal models. VGF-derived peptides (NERP-1, NERP-2, PGH-NH2, PGH-OH, NERP-4, TLQP-21, TLQP-30, TLQP-62, HHPD-41, AQEE-30, and LQEQ-19) were synthesized and screened for their ability to affect neuronal activity in vitro on hypothalamic brain slices and modulate food intake and energy expenditure after acute central administration in vivo. In addition, the effects of NERP-1, NERP-2, PGH-NH2, TLQP-21, TLQP-62, and HHPD-41 on energy homeostasis were studied after chronic central infusion. NERP-1, PGH-NH2, HHPD-41, and TLQP-62 increased the functional activity of hypothalamic neuronal networks. However, none of the peptides altered energy homeostasis after either acute or chronic ICV administration. The present data do not support the potential use of the tested VGF-derived peptides as novel anti-obesity drug candidates.


Assuntos
Fármacos Antiobesidade/farmacologia , Neuropeptídeos/genética , Neuropeptídeos/farmacologia , Obesidade/tratamento farmacológico , Animais , Peso Corporal/efeitos dos fármacos , Modelos Animais de Doenças , Metabolismo Energético/efeitos dos fármacos , Humanos , Hipotálamo/efeitos dos fármacos , Hipotálamo/metabolismo , Hipotálamo/patologia , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Neurônios/patologia , Obesidade/genética , Obesidade/patologia , Fragmentos de Peptídeos/genética , Fragmentos de Peptídeos/farmacologia , Ratos
2.
Endocrinology ; 156(4): 1292-302, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25594696

RESUMO

Peptides derived from the proopiomelanocortin (POMC) precursor are critical for the normal regulation of many physiological parameters, and POMC deficiency results in severe obesity and metabolic dysfunction. Conversely, augmentation of central nervous system melanocortin function is a promising therapeutic avenue for obesity and diabetes but is confounded by detrimental cardiovascular effects including hypertension. Because the hypothalamic population of POMC-expressing neurons is neurochemically and neuroanatomically heterogeneous, there is interest in the possible dissociation of functionally distinct POMC neuron subpopulations. We used a Cre recombinase-dependent and hypothalamus-specific reactivatable PomcNEO allele to restrict Pomc expression to hypothalamic neurons expressing leptin receptor (Lepr) in mice. In contrast to mice with total hypothalamic Pomc deficiency, which are severely obese, mice with Lepr-restricted Pomc expression displayed fully normal body weight, food consumption, glucose homeostasis, and locomotor activity. Thus, Lepr+ POMC neurons, which constitute approximately two-thirds of the total POMC neuron population, are sufficient for normal regulation of these parameters. This functional dissociation approach represents a promising avenue for isolating therapeutically relevant POMC neuron subpopulations.


Assuntos
Metabolismo Energético/fisiologia , Homeostase/fisiologia , Neurônios/metabolismo , Pró-Opiomelanocortina/metabolismo , Receptores para Leptina/metabolismo , Animais , Glicemia/metabolismo , Feminino , Teste de Tolerância a Glucose , Hipotálamo/metabolismo , Insulina/metabolismo , Leptina/metabolismo , Camundongos , Camundongos Knockout , Atividade Motora/fisiologia , Pró-Opiomelanocortina/genética , Receptores para Leptina/genética
3.
Am J Physiol Endocrinol Metab ; 306(8): E904-15, 2014 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-24518677

RESUMO

Hypothalamic proopiomelanocortin (POMC) neurons constitute a critical anorexigenic node in the central nervous system (CNS) for maintaining energy balance. These neurons directly affect energy expenditure and feeding behavior by releasing bioactive neuropeptides but are also subject to signals directly related to nutritional state such as the adipokine leptin. To further investigate the interaction of diet and leptin on hypothalamic POMC peptide levels, we exposed 8- to 10-wk-old male POMC-Discosoma red fluorescent protein (DsRed) transgenic reporter mice to either 24-48 h (acute) or 2 wk (chronic) food restriction, high-fat diet (HFD), or leptin treatment. Using semiquantitative immunofluorescence and radioimmunoassays, we discovered that acute fasting and chronic food restriction decreased the levels of adrenocorticotropic hormone (ACTH), α-melanocyte-stimulating hormone (α-MSH), and ß-endorphin in the hypothalamus, together with decreased DsRed fluorescence, compared with control ad libitum-fed mice. Furthermore, acute but not chronic HFD or leptin administration selectively increased α-MSH levels in POMC fibers and increased DsRed fluorescence in POMC cell bodies. HFD and leptin treatments comparably increased circulating leptin levels at both time points, suggesting that transcription of Pomc and synthesis of POMC peptide products are not modified in direct relation to the concentration of plasma leptin. Our findings indicate that negative energy balance persistently downregulated POMC peptide levels, and this phenomenon may be partially explained by decreased leptin levels, since these changes were blocked in fasted mice treated with leptin. In contrast, sustained elevation of plasma leptin by HFD or hormone supplementation did not significantly alter POMC peptide levels, indicating that enhanced leptin signaling does not chronically increase Pomc transcription and peptide synthesis.


Assuntos
Hipotálamo/metabolismo , Leptina/metabolismo , Estado Nutricional/fisiologia , Pró-Opiomelanocortina/metabolismo , Animais , Peso Corporal/efeitos dos fármacos , Dieta , Ingestão de Alimentos/efeitos dos fármacos , Leptina/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Pró-Opiomelanocortina/genética , Fatores de Tempo
4.
Am J Pathol ; 176(2): 881-92, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-20056834

RESUMO

Immune mediators and leukocyte engagement of brain microvascular endothelial cells (BMVECs) contribute to blood-brain barrier impairment during neuroinflammation. Glycogen synthase kinase 3beta (GSK3beta) was recently identified as a potent regulator of immune responses in in vitro systems and animal models. However, the role of GSK3beta in regulation of immune endothelial functions remains undetermined. Here we evaluated the effect of GSK3beta inhibition on the regulation of inflammatory responses in BMVECs. A focused PCR gene array of 84 genes was performed to identify the cytokine and chemokine gene expression profile in tumor necrosis factor (TNF) alpha-stimulated BMVECs after GSK3beta inactivation by specific inhibitors. Fifteen of 39 genes induced by TNFalpha stimulation were down-regulated after GSK3beta inhibition. Genes known to contribute to neuroinflammation that were most negatively affected by GSK3beta inactivation included IP-10/CXCL10, MCP-1/CCL2, IL-8/CXCL8, RANTES/CCL5, and Groalpha/CXCL1. GSK3beta suppression resulted in diminished secretion of these proinflammatory mediators by inflamed BMVECs detected by ELISA. GSK3beta inhibition in BMVECs reduced adhesion molecule expression as well as monocyte adhesion to and migration across cytokine stimulated BMVEC monolayers. Interactions of monocytes with TNFalpha-activated BMVECs led to barrier disruption, and GSK3beta suppression in the endothelium restored barrier integrity. GSK3beta inhibition in vivo substantially decreased leukocyte adhesion to brain endothelium under inflammatory conditions. In summary, inhibition of GSK3beta emerges as an important target for stabilization of the blood-brain barrier in neuroinflammation.


Assuntos
Encéfalo/efeitos dos fármacos , Encefalite/patologia , Células Endoteliais/efeitos dos fármacos , Quinase 3 da Glicogênio Sintase/antagonistas & inibidores , Inibidores de Proteínas Quinases/farmacologia , Complexo AIDS Demência/tratamento farmacológico , Complexo AIDS Demência/metabolismo , Complexo AIDS Demência/patologia , Animais , Barreira Hematoencefálica/efeitos dos fármacos , Barreira Hematoencefálica/metabolismo , Barreira Hematoencefálica/patologia , Encéfalo/irrigação sanguínea , Encéfalo/patologia , Estudos de Casos e Controles , Adesão Celular/efeitos dos fármacos , Células Cultivadas , Avaliação Pré-Clínica de Medicamentos , Encefalite/prevenção & controle , Células Endoteliais/imunologia , Glicogênio Sintase Quinase 3 beta , Humanos , Mediadores da Inflamação/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Monócitos/efeitos dos fármacos , Monócitos/metabolismo , Monócitos/patologia , Inibidores de Proteínas Quinases/uso terapêutico , Tiadiazóis/farmacologia , Tiadiazóis/uso terapêutico , Tiazóis/farmacologia , Tiazóis/uso terapêutico , Ureia/análogos & derivados , Ureia/farmacologia , Ureia/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA