Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Toxicol Pathol ; 46(6): 706-718, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-30045675

RESUMO

Hepatocellular carcinoma (HCC) is the third leading cause of cancer-related death worldwide; however, the mutational properties of HCC-associated carcinogens remain largely uncharacterized. We hypothesized that mechanisms underlying chemical-induced HCC can be characterized by evaluating the mutational spectra of these tumors. To test this hypothesis, we performed exome sequencing of B6C3F1/N HCCs that arose either spontaneously in vehicle controls ( n = 3) or due to chronic exposure to gingko biloba extract (GBE; n = 4) or methyleugenol (MEG; n = 3). Most archived tumor samples are available as formalin-fixed paraffin-embedded (FFPE) blocks, rather than fresh-frozen (FF) samples; hence, exome sequencing from paired FF and FFPE samples was compared. FF and FFPE samples showed 63% to 70% mutation concordance. Multiple known (e.g., Ctnnb1T41A, BrafV637E) and novel (e.g., Erbb4C559S, Card10A700V, and Klf11P358L) mutations in cancer-related genes were identified. The overall mutational burden was greater for MEG than for GBE or spontaneous HCC samples. To characterize the mutagenic mechanisms, we analyzed the mutational spectra in the HCCs according to their trinucleotide motifs. The MEG tumors clustered closest to Catalogue of Somatic Mutations in Cancer signatures 4 and 24, which are, respectively, associated with benzo(a)pyrene- and aflatoxin-induced HCCs in humans. These results establish a novel approach for classifying liver carcinogens and understanding the mechanisms of hepatocellular carcinogenesis.


Assuntos
Carcinógenos/toxicidade , Exoma/genética , Perfilação da Expressão Gênica , Neoplasias Hepáticas Experimentais/genética , Fígado/efeitos dos fármacos , Mutação , Análise de Sequência de DNA/métodos , Animais , Criopreservação , DNA de Neoplasias/genética , Eugenol/análogos & derivados , Eugenol/toxicidade , Feminino , Formaldeído/química , Ginkgo biloba , Fígado/patologia , Neoplasias Hepáticas Experimentais/induzido quimicamente , Neoplasias Hepáticas Experimentais/patologia , Masculino , Camundongos Endogâmicos , Inclusão em Parafina , Extratos Vegetais/toxicidade , Reprodutibilidade dos Testes , Fixação de Tecidos
2.
Endocrinology ; 159(2): 744-753, 2018 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-29216352

RESUMO

The estrogen-related receptor α (ERRα) is an orphan nuclear receptor (NR) that plays a role in energy homeostasis and controls mitochondrial oxidative respiration. Increased expression of ERRα in certain ovarian, breast, and colon cancers has a negative prognosis, indicating an important role for ERRα in cancer progression. An interaction between ERRα and peroxisome proliferator-activated receptor γ coactivator 1α (PGC-1α) has also recently been shown to regulate an enzyme in the ß-oxidation of free fatty acids, thereby suggesting that ERRα plays an important role in obesity and type 2 diabetes. Therefore, it would be prudent to identify compounds that can act as activators of ERRα. In this study, we screened ∼10,000 (8311 unique) compounds, known as the Tox21 10K collection, to identify agonists of ERRα. We performed this screen using two stably transfected HEK 293 cell lines, one with the ERRα-reporter alone and the other with both ERRα-reporter and PGC-1α expression vectors. After the primary screening, we identified more than five agonist clusters based on compound structural similarity analysis (e.g., statins). By examining the activities of the confirmed ERRα modulators in other Tox21 NR assays, eliminating those with promiscuous NR activity, and performing follow-up assays (e.g., small interfering RNA knockdown), we identified compounds that might act as endocrine disrupters through effects on ERRα signaling. To our knowledge, this study is the first comprehensive analysis in discovering potential endocrine disrupters that affect the ERRα signaling pathway.


Assuntos
Diabetes Mellitus Tipo 2/metabolismo , Receptores de Estrogênio/metabolismo , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/genética , Avaliação Pré-Clínica de Medicamentos , Células HEK293 , Humanos , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/genética , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Regiões Promotoras Genéticas , Receptores de Estrogênio/genética , Transdução de Sinais/efeitos dos fármacos , Receptor ERRalfa Relacionado ao Estrogênio
3.
J Pharmacol Exp Ther ; 318(2): 792-802, 2006 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-16687475

RESUMO

Changes in the serum proteome were identified during early, fulminant, and recovery phases of liver injury from acetaminophen in the rat. Male F344 rats received a single, noninjury dose or a high, injury-producing dose of acetaminophen for evaluation at 6 to 120 h. Two-dimensional gel electrophoresis of immunodepleted serum separated approximately 800 stained proteins per sample from which differentially expressed proteins were identified by mass spectrometry. Serum alanine aminotransferase/aspartate aminotransferase levels and histopathology revealed the greatest liver damage at 24 and 48 h after high-dose acetaminophen corresponding to the time of greatest serum protein alterations. After 24 h, 68 serum proteins were significantly altered of which 23 proteins were increased by >5-fold and 20 proteins were newly present compared with controls. Only minimal changes in serum proteins were noted at the low dose without any histopathology. Of the 54 total protein isoforms identified by mass spectrometry, gene ontology processes for 38 unique serum proteins revealed involvement of acute phase response, coagulation, protein degradation, intermediary metabolism, and various carrier proteins. Elevated serum tumor necrosis factor-alpha from 24 to 48 h suggested a mild inflammatory response accompanied by increased antioxidant capability demonstrated by increased serum catalase activity. Antibody array and enzyme-linked immunosorbent assay analyses also showed elevation in the chemokine monocyte chemoattractant protein-1 and the metalloprotease inhibitor tissue inhibitor of metalloproteinases-1 during this same period of liver injury. This study demonstrates that serum proteome alterations probably reflect both liver damage and a concerted, complex response of the body for organ repair and recovery during acute hepatic injury.


Assuntos
Acetaminofen , Analgésicos não Narcóticos , Proteínas Sanguíneas/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Proteoma/metabolismo , Alanina Transaminase/sangue , Animais , Aspartato Aminotransferases/sangue , Proteínas Sanguíneas/biossíntese , Proteínas Sanguíneas/genética , Western Blotting , Catalase/sangue , Eletroforese em Gel de Poliacrilamida , Processamento de Imagem Assistida por Computador , Masculino , Espectrometria de Massas , Proteoma/química , Proteoma/genética , Ratos , Ratos Endogâmicos F344
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA