Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
PLoS One ; 17(10): e0274920, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36282832

RESUMO

In addition to directly inducing physical and chemical defenses, herbivory experienced by plants in one generation can influence the expression of defensive traits in offspring. Plant defense phenotypes can be compromised by inbreeding, and there is some evidence that such adverse effects can extend to the transgenerational expression of induced resistance. We explored how the inbreeding status of maternal Solanum carolinense plants influenced the transgenerational effects of herbivory on the defensive traits and herbivore resistance of offspring. Manduca sexta caterpillars were used to damage inbred and outbred S. carolinense maternal plants and cross pollinations were performed to produced seeds from herbivore-damaged and undamaged, inbred and outbred maternal plants. Seeds were grown in the greenhouse to assess offspring defense-related traits (i.e., leaf trichomes, internode spines, volatile organic compounds) and resistance to herbivores. We found that feeding by M. sexta caterpillars on maternal plants had a positive influence on trichome and spine production in offspring and that caterpillar development on offspring of herbivore-damaged maternal plants was delayed relative to that on offspring of undamaged plants. Offspring of inbred maternal plants had reduced spine production, compared to those of outbred maternal plants, and caterpillars performed better on the offspring of inbred plants. Both herbivory and inbreeding in the maternal generation altered volatile emissions of offspring. In general, maternal plant inbreeding dampened transgenerational effects of herbivory on offspring defensive traits and herbivore resistance. Taken together, this study demonstrates that inducible defenses in S. carolinense can persist across generations and that inbreeding compromises transgenerational resistance in S. carolinense.


Assuntos
Solanum , Compostos Orgânicos Voláteis , Solanum/química , Herbivoria , Endogamia , Compostos Orgânicos Voláteis/metabolismo , Folhas de Planta , Fenótipo , Plantas
2.
Proc Biol Sci ; 288(1948): 20210161, 2021 04 14.
Artigo em Inglês | MEDLINE | ID: mdl-33823667

RESUMO

Insect pollinators readily learn olfactory cues, and this is expected to select for 'honest signals' that provide reliable information about floral rewards. However, plants might alternatively produce signals that exploit pollinators' sensory biases, thereby relaxing selection for signal honesty. We examined the innate and learned preferences of Bombus impatiens for Mimulus guttatus floral scent phenotypes corresponding to different levels of pollen rewards in the presence and absence of the innately attractive floral volatile compound ß-trans-bergamotene. Bees learned to prefer honest signals after foraging on live M. guttatus flowers, but only exhibited this preference when presented floral scent phenotypes that did not include ß-trans-bergamotene. Our results suggest that a sensory bias for ß-trans-bergamotene overrides the ability of B. impatiens to use honest signals when foraging on M. guttatus. This may represent a deceptive pollination strategy that allows plants to minimize investment in costly rewards without incurring reduced rates of pollinator visitation.


Assuntos
Mimulus , Animais , Abelhas , Viés , Flores , Pólen , Polinização
3.
Am J Bot ; 108(1): 74-82, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33450062

RESUMO

PREMISE: Inbreeding depression is well documented in flowering plants and adversely affects a wide range of fitness-related traits. Recent work has begun to explore the effects of inbreeding on ecological interactions among plants and other organisms, including insect herbivores and pathogens. However, the effects of inbreeding on floral traits, floral scents, and pollinator visitation are less well studied. METHODS: Using inbred and outbred maternal families of horsenettle (Solanum carolinense, Solanaceae), we examined the effects of inbreeding on traits associated with pollinator attraction and floral rewards. Specifically, we measured corolla size, counted pollen grains per flower, and analyzed floral volatile emissions via gas chromatography and mass spectrometry. We also examined pollinator visitation to experimental arrays of flowering inbred and outbred plants under field conditions. RESULTS: Compared to those of outbred plants, flowers of inbred plants exhibited reduced corolla size and pollen production, as well as significantly reduced emission of the two most abundant volatile compounds in the floral blend. Furthermore, bumblebees-the main pollinators of horsenettle-discriminated against inbred flowers in the field: bees were more likely to make initial visits to flowers on outbred plants, visited outbred flowers more often overall, and spent more time on outbred flowers. CONCLUSIONS: These results show that inbreeding can (1) alter floral traits that are known to mediate pollinator attraction; (2) reduce the production of floral rewards (pollen is the sole reward in horsenettle); and (3) adversely affect pollinator visitation under field conditions.


Assuntos
Polinização , Solanum , Animais , Abelhas , Flores , Cromatografia Gasosa-Espectrometria de Massas , Endogamia , Recompensa , Solanum/genética
4.
Science ; 368(6493): 881-884, 2020 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-32439792

RESUMO

Maintaining phenological synchrony with flowers is a key ecological challenge for pollinators that may be exacerbated by ongoing environmental change. Here, we show that bumble bee workers facing pollen scarcity damage leaves of flowerless plants and thereby accelerate flower production. Laboratory studies revealed that leaf-damaging behavior is strongly influenced by pollen availability and that bee-damaged plants flower significantly earlier than undamaged or mechanically damaged controls. Subsequent outdoor experiments showed that the intensity of damage inflicted varies with local flower availability; furthermore, workers from wild colonies of two additional bumble bee species were also observed to damage plant leaves. These findings elucidate a feature of bumble bee worker behavior that can influence the local availability of floral resources.


Assuntos
Abelhas/fisiologia , Comportamento Alimentar , Flores/crescimento & desenvolvimento , Folhas de Planta/fisiologia , Pólen , Animais
5.
Am J Bot ; 107(2): 286-297, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31944272

RESUMO

PREMISE: Plant maternal effects on offspring phenotypes are well documented. However, little is known about how herbivory on maternal plants affects offspring fitness. Furthermore, while inbreeding is known to reduce plant reproductive output, previous studies have not explored whether and how such effects may extend across generations. Here, we addressed the transgenerational consequences of herbivory and maternal plant inbreeding on the reproduction of Solanum carolinense offspring. METHODS: Manduca sexta caterpillars were used to inflict weekly damage on inbred and outbred S. carolinense maternal plants. Cross-pollinations were performed by hand to produce seed from herbivore-damaged outbred plants, herbivore-damaged inbred plants, undamaged outbred plants, and undamaged inbred plants. The resulting seeds were grown in the greenhouse to assess emergence rate and flower production in the absence of herbivores. We also grew offspring in the field to examine reproductive output under natural conditions. RESULTS: We found transgenerational effects of herbivory and maternal plant inbreeding on seedling emergence and reproductive output. Offspring of herbivore-damaged plants had greater emergence, flowered earlier, and produced more flowers and seeds than offspring of undamaged plants. Offspring of outbred maternal plants also had greater seedling emergence and reproductive output than offspring of inbred maternal plants, even though all offspring were outbred. Moreover, the effects of maternal plant inbreeding were more severe when plant offspring were grown in field conditions. CONCLUSIONS: This study demonstrates that both herbivory and inbreeding have fitness consequences that extend across generations even in outbred progeny.


Assuntos
Manduca , Solanum , Animais , Herbivoria , Endogamia , Reprodução
6.
BMC Plant Biol ; 19(1): 209, 2019 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-31113387

RESUMO

BACKGROUND: By sensing environmental cues indicative of pathogens or herbivores, plants can "prime" appropriate defenses and deploy faster, stronger responses to subsequent attack. Such priming presumably entails costs-else the primed state should be constitutively expressed-yet those costs remain poorly documented, in part due to a lack of studies conducted under realistic ecological conditions. We explored how defence priming in goldenrod (Solidago altissima) influenced growth and reproduction under semi-natural field conditions by manipulating exposure to priming cues (volatile emissions of a specialist herbivore, Eurosta solidaginis), competition between neighbouring plants, and herbivory (via insecticide application). RESULTS: We found that primed plants grew faster than unprimed plants, but produced fewer rhizomes, suggesting reduced capacity for clonal reproduction. Unexpectedly, this effect was apparent only in the absence of insecticide, prompting a follow-up experiment that revealed direct effects of the pesticide esfenvalerate on plant growth (contrary to previous reports from goldenrod). Meanwhile, even in the absence of pesticide, priming had little effect on herbivore damage levels, likely because herbivores susceptible to the primed defences were rare or absent due to seasonality. CONCLUSIONS: Reduced clonal reproduction in primed plants suggest that priming can entail significant costs for plants. These costs, however, may only become apparent when priming cues fail to provide accurate information about prevailing threats, as was the case in this study. Additionally, our insecticide data indicate that pesticides or their carrier compounds can subtly, but significantly, affect plant physiology and may interact with plant defences.


Assuntos
Herbivoria , Solidago/fisiologia , Tephritidae/fisiologia , Compostos Orgânicos Voláteis/metabolismo , Animais , Sinais (Psicologia) , Distribuição Aleatória , Rizoma/crescimento & desenvolvimento , Rizoma/fisiologia , Solidago/crescimento & desenvolvimento
7.
Nat Commun ; 8(1): 337, 2017 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-28835618

RESUMO

It is increasingly clear that plants perceive and respond to olfactory cues. Yet, knowledge about the specificity and sensitivity of such perception remains limited. We previously documented priming of anti-herbivore defenses in tall goldenrod plants (Solidago altissima) by volatile emissions from a specialist herbivore, the goldenrod gall fly (Eurosta solidaginis). Here, we explore the specific chemical cues mediating this interaction. We report that E,S-conophthorin, the most abundant component of the emission of male flies, elicits a priming response equivalent to that observed for the overall blend. Furthermore, while the strength of priming is dose dependent, plants respond even to very low concentrations of E,S-conophthorin relative to typical fly emissions. Evaluation of other blend components yields results consistent with the hypothesis that priming in this interaction is mediated by a single compound. These findings provide insights into the perceptual capabilities underlying plant defense priming in response to olfactory cues.Plants are able to prime anti-herbivore defenses in response to olfactory cues of insect pests. Here, Helms et al. identify the insect pheromone E,S-conophthorin produced by the goldenrod gall fly as the specific chemical component that elicits this priming response in goldenrod plants.


Assuntos
Sinais (Psicologia) , Bulbo Olfatório/fisiologia , Solidago/parasitologia , Tephritidae/fisiologia , Animais , Herbivoria/fisiologia , Interações Hospedeiro-Parasita , Masculino , Feromônios/química , Compostos de Espiro/química , Compostos Orgânicos Voláteis/química
8.
Biol Lett ; 13(5)2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28490447

RESUMO

The spines of flowering plants are thought to function primarily in defence against mammalian herbivores; however, we previously reported that feeding by Manduca sexta caterpillars on the leaves of horsenettle plants (Solanum carolinense) induces increased development of internode spines on new growth. To determine whether and how spines impact caterpillar feeding, we conducted assays with three Solanaceous plant species that vary in spine numbers (S. carolinense, S. atropurpureum and S. aethiopicum) and also manipulated spine numbers within each species. We found that M. sexta caterpillars located experimentally isolated target leaves much more quickly on plants with experimentally removed spines compared with plants with intact spines. Moreover, it took caterpillars longer to defoliate species with relatively high spine numbers (S. carolinense and particularly Satropurpureum) compared with S. aethiopicum, which has fewer spines. These findings suggest that spines may play a significant role in defence against insect herbivores by restricting herbivore movement and increasing the time taken to access feeding sites, with possible consequences including longer developmental periods and increased vulnerability or apparency to predators.


Assuntos
Herbivoria , Animais , Insetos , Larva , Manduca , Folhas de Planta , Solanum
9.
Proc Biol Sci ; 284(1849)2017 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-28228510

RESUMO

Plant trichomes constitute a first line of defence against insect herbivores. The pre- and post-ingestive defensive functions of glandular trichomes are well documented and include direct toxicity, adhesion, antinutrition and defence gene induction. By contrast, the defensive functions of non-glandular trichomes are less well characterized, although these structures are thought to serve as physical barriers that impede herbivore feeding and movement. We experimentally varied the density of stellate non-glandular trichomes in several ways to explore their pre- and post-ingestive effects on herbivores. Larvae of Manduca sexta (Sphingidae) initiated feeding faster and gained more weight on Solanum carolinense (Solanaceae) leaves having lower trichome densities (or experimentally removed trichomes) than on leaves having higher trichome densities. Adding trichomes to artificial diet also deterred feeding and adversely affected caterpillar growth relative to controls. Scanning electron and light microscopy revealed that the ingestion of stellate trichomes by M. sexta caterpillars caused extensive damage to the peritrophic membrane, a gut lining that is essential to digestion and pathogen isolation. These findings suggest that, in addition to acting as a physical barrier to deter feeding, trichomes can inhibit caterpillar growth and development via post-ingestive effects.


Assuntos
Herbivoria , Manduca , Folhas de Planta/anatomia & histologia , Solanum , Tricomas/anatomia & histologia , Animais , Sistema Digestório/patologia
10.
BMC Plant Biol ; 14: 173, 2014 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-24947749

RESUMO

BACKGROUND: The induction of plant defenses in response to herbivory is well documented. In addition, many plants prime their anti-herbivore defenses following exposure to environmental cues associated with increased risk of subsequent attack, including induced volatile emissions from herbivore-damaged plant tissues. Recently, we showed in both field and laboratory settings that tall goldenrod plants (Solidago altissima) exposed to the putative sex attractant of a specialist gall-inducing fly (Eurosta solidaginis) experienced less herbivory than unexposed plants. Furthermore, we observed stronger induction of the defense phytohormone jasmonic acid in exposed plants compared to controls. These findings document a novel class of plant-insect interactions mediated by the direct perception, by plants, of insect-derived olfactory cues. However, our previous study did not exclude the possibility that the fly emission (or its residue) might also deter insect feeding via direct effects on the herbivores. RESULTS: Here we show that the E. solidaginis emission does not (directly) deter herbivore feeding on Cucurbita pepo or Symphyotrichum lateriflorum plants--which have no co-evolutionary relationship with E. solidaginis and thus are not expected to exhibit priming responses to the fly emission. We also document stronger induction of herbivore-induced plant volatiles (HIPV) in S. altissima plants given previous exposure to the fly emission relative to unexposed controls. No similar effect was observed in maize plants (Zea mays), which have no co-evolutionary relationship with E. solidaginis. CONCLUSIONS: Together with our previous findings, these results provide compelling evidence that reduced herbivory on S. altissima plants exposed to the emission of male E. solidaginis reflects an evolved plant response to olfactory cues associated with its specialist herbivore and does not involve direct effects of the fly emission on herbivore feeding behavior. We further discuss mechanisms by which the priming of HIPV responses documented here might contribute to enhanced S. altissima defense against galling.


Assuntos
Herbivoria/fisiologia , Solidago/fisiologia , Tephritidae/fisiologia , Compostos Orgânicos Voláteis/metabolismo , Animais , Bioensaio , Ritmo Circadiano , Feminino , Masculino
11.
Am J Bot ; 101(2): 376-80, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24509799

RESUMO

PREMISE OF THIS STUDY: The mediation of plant-insect interactions by plant odors has been studied extensively, but most previous work has focused on documenting the role of constitutive and herbivore- or pathogen-induced plant volatiles as foraging cues for insect herbivores and their natural enemies. Relatively little work has explored genotypic variation in plant-odor profiles within species, and few studies have addressed the perception and use of olfactory cues by lepidopteran larvae or other herbivores during feeding. METHODS: We examined the effects of plant breeding (inbred vs. outbred individuals) and plant exposure to prior herbivory on the preferences of caterpillars (Manduca sexta) for odors of Solanum carolinense in leaf-disc and whole-plant choice assays. KEY RESULTS: Second- and third-instar larvae of M. sexta clearly and consistently preferred undamaged over herbivore-damaged plants of both breeding types and also consistently preferred inbred over outbred plants that had the same damage status. Similar preferences were observed even when plants were covered with bridal-veil cloth to mask visual cues, demonstrating that olfactory cues influence larval preferences. CONCLUSIONS: The observed preferences are consistent with our previous findings regarding the constitutive and induced volatile profiles of inbred and outbred horsenettle plants and their effects on plant-herbivore interactions. They furthermore correspond to differences in host-plant quality predicted by previous work and, thus, suggest that naive larvae of M. sexta can accurately assess aspects of host-plant quality via olfactory cues perceived at a distance.


Assuntos
Herbivoria , Endogamia , Larva , Manduca , Odorantes , Folhas de Planta , Solanum/fisiologia , Animais , Doenças das Plantas , Solanum/genética , Solanum/metabolismo , Compostos Orgânicos Voláteis/metabolismo
12.
Am J Bot ; 100(6): 1014-21, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23545253

RESUMO

PREMISE OF THE STUDY: A growing number of studies document effects of inbreeding on plant interactions with insect herbivores, including deleterious effects on direct and indirect plant defenses. However, our understanding of the specific mechanisms mediating such effects remains limited. Here we examine how inbreeding affects constitutive and induced expression of structural defenses (spines and trichomes) in common horsenettle, Solanum carolinense. • METHODS: Inbred and outbred progeny from nine maternal families of horsenettle were assigned to three treatments: control, Manduca sexta caterpillar damage, or mechanical damage. Numbers of internode spines and the density of abaxial and adaxial trichomes were assessed before and after (21 d) damage treatments. Data on internode length, flowering time, and total flower production was also collected to explore the costs of defense induction. • KEY RESULTS: Inbreeding adversely affected constitutive and induced physical/structural defenses: undamaged outbred plants produced more abaxial and adaxial leaf trichomes and internode spines than did inbred plants. Foliar damage by M. sexta larvae also induced more trichomes (on new leaves) and internode spines on outbred plants. Both inbred and outbred plants exposed to mechanical or caterpillar damage had shorter internodes than did control plants, but inbred damaged plants had longer internodes than did outbred damaged plants. Control outbred plants produced significantly more flowers than did control inbred plants or damaged plants of either breeding type. • CONCLUSIONS: Constitutive and induced structural defenses in horsenettle were negatively affected by inbreeding. Reduced flower production and internode length on damaged plants compared to controls suggests that defense induction entails significant costs.


Assuntos
Herbivoria/fisiologia , Endogamia , Manduca/fisiologia , Solanum/genética , Solanum/fisiologia , Animais , Larva/fisiologia , Folhas de Planta/anatomia & histologia , Folhas de Planta/genética , Folhas de Planta/fisiologia
13.
Proc Biol Sci ; 280(1757): 20130020, 2013 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-23446531

RESUMO

Plant volatiles serve as key foraging and oviposition cues for insect herbivores as well as their natural enemies, but little is known about how genetic variation within plant populations influences volatile-mediated interactions among plants and insects. Here, we explore how inbred and outbred plants from three maternal families of the native weed horsenettle (Solanum carolinense) vary in the emission of volatile organic compounds during the dark phase of the photoperiod, and the effects of this variation on the oviposition preferences of Manduca sexta moths, whose larvae are specialist herbivores of Solanaceae. Compared with inbred plants, outbred plants consistently released more total volatiles at night and more individual compounds-including some previously reported to repel moths and attract predators. Female moths overwhelmingly chose to lay eggs on inbred (versus outbred) plants, and this preference persisted when olfactory cues were presented in the absence of visual and contact cues. These results are consistent with our previous findings that inbred plants recruit more herbivores and suffer greater herbivory under field conditions. Furthermore, they suggest that constitutive volatiles released during the dark portion of the photoperiod can convey accurate information about plant defence status (and/or other aspects of host plant quality) to foraging herbivores.


Assuntos
Endogamia , Manduca/efeitos dos fármacos , Óleos Voláteis/metabolismo , Solanum/genética , Animais , Sinais (Psicologia) , Escuridão , Feminino , Manduca/fisiologia , Análise Multivariada , Óleos Voláteis/farmacologia , Oviposição/efeitos dos fármacos , Solanum/metabolismo
14.
Proc Natl Acad Sci U S A ; 110(1): 199-204, 2013 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-23237852

RESUMO

Recent work indicates that plants respond to environmental odors. For example, some parasitic plants grow toward volatile cues from their host plants, and other plants have been shown to exhibit enhanced defense capability after exposure to volatile emissions from herbivore-damaged neighbors. Despite such intriguing discoveries, we currently know relatively little about the occurrence and significance of plant responses to olfactory cues in natural systems. Here we explore the possibility that some plants may respond to the odors of insect antagonists. We report that tall goldenrod (Solidago altissima) plants exposed to the putative sex attractant of a closely associated herbivore, the gall-inducing fly Eurosta solidaginis, exhibit enhanced defense responses and reduced susceptibility to insect feeding damage. In a field study, egg-laying E. solidaginis females discriminated against plants previously exposed to the sex-specific volatile emissions of males; furthermore, overall rates of herbivory were reduced on exposed plants. Consistent with these findings, laboratory assays documented reduced performance of the specialist herbivore Trirhabda virgata on plants exposed to male fly emissions (or crude extracts), as well as enhanced induction of the key defense hormone jasmonic acid in exposed plants after herbivory. These unexpected findings from a classic ecological study system provide evidence for a previously unexplored class of plant-insect interactions involving plant responses to insect-derived olfactory cues.


Assuntos
Sinais (Psicologia) , Herbivoria/efeitos dos fármacos , Atrativos Sexuais/farmacologia , Solidago/efeitos dos fármacos , Tephritidae/química , Compostos Orgânicos Voláteis/farmacologia , Animais , Ciclopentanos/análise , Feminino , Cromatografia Gasosa-Espectrometria de Massas , Masculino , Oxilipinas/análise , Pennsylvania , Fatores Sexuais
15.
Plant Signal Behav ; 7(7): 803-6, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22751298

RESUMO

Inbreeding is common in flowering plants, but relatively few studies have examined its effects on interactions between plants and other organisms, such as herbivores and pathogens. In a recent paper, we documented effects of inbreeding depression on plant volatile signaling phenotypes, including elevated constitutive volatile emissions (and consequently greater herbivore recruitment to inbred plants) but reduced emission of key herbivore-induced volatiles that attract predatory and parasitic insects to damaged plants. While the effects of inbreeding on plant-insect interactions have been explored in only a few systems, even less is known about its effects on plant-pathogen interactions. Here we report the effects of inbreeding on horsenettle susceptibility to powdery mildew (Oidium neolycopersici), including more rapid onset of infection in inbred plants, particularly when plants were not previously damaged. These data suggest that inbreeding may increase plant susceptibility to pathogen infection and, therefore, may potentially facilitate pathogen establishment in natural populations.


Assuntos
Ascomicetos/fisiologia , Endogamia , Doenças das Plantas/microbiologia , Solanum/microbiologia , Animais , Suscetibilidade a Doenças , Larva/fisiologia , Modelos Logísticos , Manduca/fisiologia , Doenças das Plantas/parasitologia , Doenças das Plantas/estatística & dados numéricos , Solanum/parasitologia
16.
Ecol Lett ; 15(4): 301-9, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22257268

RESUMO

The ecological consequences of inter-individual variation in plant volatile emissions remain largely unexplored. We examined the effects of inbreeding on constitutive and herbivore-induced volatile emissions in horsenettle (Solanum carolinense L.) and on the composition of the insect community attracted to herbivore-damaged and undamaged plants in the field. Inbred plants exhibited higher constitutive emissions, but weaker induction of volatiles following herbivory. Moreover, many individual compounds previously implicated in the recruitment of predators and parasitoids (e.g. terpenes) were induced relatively weakly (or not at all) in inbred plants. In trapping experiments, undamaged inbred plants attracted greater numbers of generalist insect herbivores than undamaged outcrossed plants. But inbred plants recruited fewer herbivore natural enemies (predators and parasitoids) when damaged. Taken together, these findings suggest that inbreeding depression negatively impacts the overall pattern of volatile emissions - increasing the apparency of undamaged plants to herbivores, while reducing the recruitment of predatory insects to herbivore-damaged plants.


Assuntos
Endogamia , Solanum/química , Solanum/genética , Compostos Orgânicos Voláteis/química , Animais , Herbivoria , Insetos , Fenótipo , Folhas de Planta/química , Terpenos/química
17.
PLoS One ; 6(12): e28459, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22174810

RESUMO

The clonal weed Solanum carolinense exhibits plasticity in the strength of its self-incompatibility (SI) system and suffers low levels of inbreeding depression (δ) in the greenhouse. We planted one inbred and one outbred plant from each of eight maternal plants in a ring (replicated twice) and monitored clonal growth, herbivory, and reproduction over two years. Per ramet δ was estimated to be 0.63 in year one and 0.79 in year two, and outbred plants produced 2.5 times more ramets than inbred plants in the spring of year two. Inbred plants also suffered more herbivore damage than outbred plants in both fields, suggesting that inbreeding compromises herbivore resistance. Total per genet δ was 0.85 over the two years, indicating that S. carolinense is unlikely to become completely self-compatible, and suggesting that plasticity in the SI system is part of a stable mixed-mating system permitting self-fertilization when cross pollen limits seed production.


Assuntos
Agricultura/métodos , Evolução Biológica , Endogamia , Solanum/crescimento & desenvolvimento , Herbivoria/fisiologia , Reprodução/fisiologia , Sementes/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA