Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Métodos Terapêuticos e Terapias MTCI
Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Clin Oral Investig ; 26(3): 3151-3166, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35006293

RESUMO

OBJECTIVES: This study's aim was to investigate the safety and performance of a self-assembling peptide matrix (SAPM) P11-4 for the treatment of periodontal disease in a controlled pre-clinical study. MATERIALS AND METHODS: Acute buccal bony dehiscence defects (LxW: 5 × 3 mm) were surgically created on the distal root of four teeth on one mandible side of 7 beagle dogs followed by another identical surgery 8 weeks later on the contralateral side. SAPM P11-4 (with and without root conditioning with 24% EDTA (T1, T2)), Emdogain® (C) and a sham intervention (S) were randomly applied on the four defects at each time point. Four weeks after the second surgery and treatment, the animals were sacrificed, the mandibles measured by micro-computed tomography (µ-CT) and sections of the tissue were stained and evaluated histologically. RESULTS: Clinically and histologically, no safety concerns or pathological issues due to the treatments were observed in any of the study groups at any time point. All groups showed overall similar results after 4 and 12 weeks of healing regarding new cementum, functionality of newly formed periodontal ligament and recovery of height and volume of the new alveolar bone and mineral density. CONCLUSION: A controlled clinical study in humans should be performed in a next step as no adverse effects or safety issues, which might affect clinical usage of the product, were observed. CLINICAL RELEVANCE: The synthetic SAPM P11-4 may offer an alternative to the animal-derived product Emdogain® in the future.


Assuntos
Regeneração Tecidual Guiada Periodontal , Oligopeptídeos , Ligamento Periodontal , Perda do Osso Alveolar/diagnóstico por imagem , Perda do Osso Alveolar/patologia , Perda do Osso Alveolar/cirurgia , Animais , Regeneração Óssea , Cemento Dentário , Cães , Regeneração Tecidual Guiada Periodontal/veterinária , Mandíbula/cirurgia , Oligopeptídeos/efeitos adversos , Ligamento Periodontal/patologia , Raiz Dentária/cirurgia , Microtomografia por Raio-X
2.
Mol Nutr Food Res ; 65(12): e2000991, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33909947

RESUMO

SCOPE: The Optimal Fibre Trial (OptiFiT) investigates metabolic effects of insoluble cereal fibre in subjects with impaired glucose tolerance (IGT), showing moderate glycemic and anti-inflammatory benefits, especially in subjects with an obesity-related phenotype. An OptiFiT sub-group is analysed for effects on body fat distribution. METHODS AND RESULTS: 180 participants with IGT receive a blinded, randomized supplementation with insoluble cereal fibre or placebo for 2 years. Once a year, all subjects undergo fasting blood sampling, oral glucose tolerance test, and anthropometric measurements. A subgroup (n=47) also received magnetic resonance imaging and spectroscopy for quantification of adipose tissue distribution and liver fat content. We compared MR, metabolic and inflammatory outcomes between fibre and placebo group metabolism and inflammation. Visceral and non-visceral fat, fasting glucose, HbA1c, fasting insulin, insulin resistance, and uric acid decrease only in the fibre group, mirroring effects of the entire cohort. However, after adjustment for weight loss, there are no significant between-group differences. There is a statistical trend for fibre-driven liver fat reduction in subjects with confirmed non-alcoholic fatty liver disease (NAFLD; n = 19). CONCLUSIONS: Data and evidence on beneficial effects of insoluble cereal fibre on visceral and hepatic fatstorage is limited, but warrants further research. Targeted trials are required.


Assuntos
Distribuição da Gordura Corporal , Fibras na Dieta/farmacologia , Grão Comestível/química , Hepatopatia Gordurosa não Alcoólica/dietoterapia , Idoso , Glicemia/análise , Peso Corporal , Suplementos Nutricionais , Feminino , Intolerância à Glucose , Hemoglobinas Glicadas/análise , Humanos , Masculino , Pessoa de Meia-Idade , Placebos , Solubilidade
3.
J Cell Sci ; 119(Pt 12): 2592-603, 2006 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-16735439

RESUMO

Signal-mediated translocation of transient receptor potential (TRP) channels is a novel mechanism to fine tune a variety of signaling pathways including neuronal path finding and Drosophila photoreception. In Drosophila phototransduction the cation channels TRP and TRP-like (TRPL) are the targets of a prototypical G protein-coupled signaling pathway. We have recently found that the TRPL channel translocates between the rhabdomere and the cell body in a light-dependent manner. This translocation modifies the ion channel composition of the signaling membrane and induces long-term adaptation. However, the molecular mechanism underlying TRPL translocation remains unclear. Here we report that eGFP-tagged TRPL expressed in the photoreceptor cells formed functional ion channels with properties of the native channels, whereas TRPL-eGFP translocation could be directly visualized in intact eyes. TRPL-eGFP failed to translocate to the cell body in flies carrying severe mutations in essential phototransduction proteins, including rhodopsin, Galphaq, phospholipase Cbeta and the TRP ion channel, or in proteins required for TRP function. Our data, furthermore, show that the activation of a small fraction of rhodopsin and of residual amounts of the Gq protein is sufficient to trigger TRPL-eGFP internalization. In addition, we found that endocytosis of TRPL-eGFP occurs independently of dynamin, whereas a mutation of the unconventional myosin III, NINAC, hinders complete translocation of TRPL-eGFP to the cell body. Altogether, this study revealed that activation of the phototransduction cascade is mandatory for TRPL internalization, suggesting a critical role for the light induced conductance increase and the ensuing Ca2+ -influx in the translocation process. The critical role of Ca2+ influx was directly demonstrated when the light-induced TRPL-eGFP translocation was blocked by removing extracellular Ca2+.


Assuntos
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Luz , Células Fotorreceptoras de Invertebrados/fisiologia , Canais de Potencial de Receptor Transitório/metabolismo , Visão Ocular/fisiologia , Animais , Arrestinas/biossíntese , Arrestinas/fisiologia , Cálcio/metabolismo , Cálcio/efeitos da radiação , Proteínas de Drosophila/antagonistas & inibidores , Proteínas de Drosophila/efeitos da radiação , Drosophila melanogaster/efeitos da radiação , Proteínas de Fluorescência Verde/antagonistas & inibidores , Proteínas de Fluorescência Verde/metabolismo , Proteínas de Fluorescência Verde/efeitos da radiação , Células Fotorreceptoras de Invertebrados/efeitos da radiação , Transporte Proteico/fisiologia , Transporte Proteico/efeitos da radiação , Rodopsina/fisiologia , Frações Subcelulares/efeitos dos fármacos , Frações Subcelulares/metabolismo , Canais de Potencial de Receptor Transitório/antagonistas & inibidores , Canais de Potencial de Receptor Transitório/efeitos da radiação , Visão Ocular/efeitos da radiação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA