Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
World J Diabetes ; 13(8): 622-642, 2022 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-36159224

RESUMO

BACKGROUND: Diabetes is a metabolic disease with a high complication rate. Diabetic foot ulcers (DFUs) seriously affect the quality of life of patients. A total of 15%-20% of diabetic patients develop DFUs, which heal with difficulty over a long time and can result in amputation and disability. Traditional Chinese medicine has a unique effect in the treatment of skin ulcerative diseases. Ruyi Jinhuang powder (RHP) is one of the classic prescriptions in traditional Chinese medicine and is widely used in clinical practice. AIM: To verify the ability of RHP to promote wound healing by electron microscopy analysis in animal models and hematoxylin-eosin (HE) staining. The effective components of RHP were extracted and identified by gas chromatography-mass spectrometry (GC-MS), and the obtained chemical components were analyzed by network pharmacology methods to predict its therapeutic mechanism. METHODS: Sprague Dawley rats were injected with streptozotocin to establish the DFU model. HE staining was used to observe the wound tissue under an electron microscope. The chemical constituents of RHP were extracted first by supercritical fluid extraction and alcohol extraction, and then, GC-MS and ultra-performance liquid chromatography-MS were used to separately identify the chemical constituents. In addition, the "herb-component-target" link was established through the Traditional Chinese Medicine Systems Pharmacology database to obtain the target information, and the molecular docking of important components and key targets was performed in Discovery Studio software. Cytoscape software was used to visualize and analyze the relationship between the chemical composition, targets and Traditional Chinese Medicine network. RESULTS: RHP promoted DFU healing in rats by affecting fibroblasts and nerve cells. A total of 89 chemical components were obtained by GC-MS. Network pharmacological analysis revealed that RHP was associated with 36 targets and 27 pathways in the treatment of DFU, of which the important components were luteolin, trans caryophyllene, ar-turmerone, palmitic acid, methyl palmitate, gallic acid, demethoxycurcumin, berberine, and rheic acid. The key targets were posttranscriptional silencing, topoisomerase II alpha, muscarinic acetylcholine receptor M2, interleukin 6, tumor necrosis factor and retinoic X receptor alpha, and the key pathways were the phosphoinositide 3-kinase-protein kinase B signaling pathway, neuroactive ligand-receptor interactions, and the forkhead box O signaling pathway. CONCLUSION: Our results indicated that RHP may play a role in the treatment of DFU through these target pathways by affecting insulin resistance, altering the nervous system and immune system, participating in inflammatory responses and regulating cell proliferation, differentiation and apoptosis through other specific mechanisms.

2.
Zhongguo Zhong Yao Za Zhi ; 44(18): 3917-3923, 2019 Sep.
Artigo em Chinês | MEDLINE | ID: mdl-31872725

RESUMO

Dengzhan Shengmai Capsules( DZSMC),a well-known traditional Chinese medicine( TCM) formula,is comprised of the main drug of Erigeron breviscapus,and supplemented with Panax ginseng,Ophiopogon japonicus and Schisandra chinensis,with functions of supplementing Qi and nourishing Yin,promoting blood circulation and strengthening brain. DZSMC is the only Chinese patent drug with A-level evidence-based medicine in secondary prevention for stroke and ranks first among TCMs for neurological treatment. Modern studies indicate that the chemical constituents of DZSMC mainly include flavonoids,phenolic acids,lignans,saponins and so on. Pharmacological experimental studies have shown that DZSMC has such pharmacological effects as anti-oxidation,anti-inflammatory and anti-myocardial ischemia. DZSMC is mainly used in the convalescent care of ischemic cardiovascular and cerebrovascular diseases,and is often used in combination with various conventional therapeutic drugs to exert clinical efficacy through brain protection,neuroprotection,etc.,and improve clinical symptoms in patients. In this review,according to domestic and international related literature combined with research results obtained by our project,the research advances in the chemical constituents,pharmacological effects and clinical application of DZSMC have been systematically reviewed and summarized,providing reference and support for further study and secondary development of the formula.


Assuntos
Medicamentos de Ervas Chinesas/farmacologia , Erigeron/química , Humanos , Medicina Tradicional Chinesa , Ophiopogon , Panax , Compostos Fitoquímicos/farmacologia , Fitoterapia , Schisandra
3.
J Sep Sci ; 42(17): 2748-2761, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31207087

RESUMO

Xiaojin Capsule, a classic traditional Chinese medicine formula, has been used to treat mammary cancer, thyroid nodules, and hyperplasia of the mammary glands. However, its systematic chemical information remained unclear, which hindered the interpretation of the pharmacology and the mechanism of action of this drug. In this research, an ultra high performance liquid chromatography coupled with a quadrupole time-of-flight mass spectrometry method was developed to identify the complicated components and metabolites of Xiaojin Capsule. Two acquisition modes, including the MSEnergy mode and fast data directed acquisition mode, were utilized for chemical profiling. As a result, 156 compounds were unambiguously or tentatively identified by comparing their retention times and mass spectrometry data with those of reference standards or literature. After the oral administration of Xiaojin Capsule, 53 constituents, including 24 prototype compounds and 29 metabolites, were detected in rat plasma. The obtained results were beneficial for a better understanding of the therapeutic basis of Xiaojin Capsule. A high-resolution and efficient separation method was firstly established for systematically characterizing the compounds of Xiaojin Capsule and the associated metabolites in vivo, which could be helpful for quality control and pharmacokinetic studies of this medicine.


Assuntos
Medicamentos de Ervas Chinesas/análise , Administração Oral , Cápsulas/administração & dosagem , Cápsulas/análise , Cápsulas/metabolismo , Cromatografia Líquida de Alta Pressão , Medicamentos de Ervas Chinesas/administração & dosagem , Medicamentos de Ervas Chinesas/metabolismo , Espectrometria de Massas , Medicina Tradicional Chinesa , Fatores de Tempo
4.
Artigo em Inglês | MEDLINE | ID: mdl-30682539

RESUMO

Dengzhan Shengmai Capsule (DZSMC) is a traditional Chinese medicine (TCM) formula with remarkable clinical effect in the treatment of stroke sequelae. Exploring the components of DZSMC and detecting the absorbed prototype constituents and metabolites in blood are of great significance to clarify the effective substances of this prescription. Here, a reliable method using ultra-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry (UPLC-QTOF/MS) was established for the comprehensive analysis of chemical constituents of DZSMC and their metabolites in rat plasma after gastric perfusion. Two acquisition modes, including MSE mode and Fast DDA mode, were performed for acquiring more precursor ions and cleaner precursor-product ions background during the study of constituents of DZSMC. As a result, a total of 125 constituents were unambiguously characterized or tentatively identified. For the first time, a total of 92 components, including 44 prototype components and 48 metabolites were unambiguously or tentatively identified in rat plasma. The metabolic pathways included phase I reactions (hydration, hydrogenation, oxidation, demethylation and hydroxylation) and phase II reactions (conjugation with glucuronide, sulfate and methyl). Furthermore, the metabolites from caffeic acid and scutellarin were characterized and validated by phase II metabolic reactions in vitro, which could be established as a simulated in vivo environment of metabolites identification and verification of TCM formula. It is the first systematic study on metabolism of DZSMC in vivo and could also provide a valid analytical strategy for characterization of the chemical compounds and metabolites of TCM formula.


Assuntos
Medicamentos de Ervas Chinesas/metabolismo , Animais , Apigenina/sangue , Ácidos Cafeicos/sangue , Cromatografia Líquida de Alta Pressão , Glucuronatos/sangue , Masculino , Metaboloma , Ratos , Ratos Sprague-Dawley , Espectrometria de Massas em Tandem
5.
J Pharm Biomed Anal ; 164: 70-85, 2019 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-30359841

RESUMO

Metabolites derived from traditional Chinese medicine (TCM) are becoming active substances of pharmacologically as well as promising sources for discovering new drugs. However, detection and identification of constituents in vivo remains a challenge for TCM, due to massive endogenous interference and low abundance of metabolites in biological matrix. Traditional Chinese medicine formula Dan Zhi Tablet (DZT), a well-established TCM formula developed based on years of clinical experiences, was widely used to treat cerebral infraction disease. In this study, an integrated strategy based on ultra-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry (UPLC-QTOF/MS) was adopted to comprehensively identify the prototype and metabolite constituents of DZT. The potential constituents were screened by cross orthogonal partial least-squares discriminant analysis (OPLS-DA). Automatic matching analysis was performed on UNIFI platform based on the function of predicting metabolites. Using this strategy, a total of 170 compounds, including 51 prototype constituents and 119 metabolites were unambiguously or tentatively identified in rat plasma. Furthermore, 31 compounds have also been detected in rat cerebrospinal fluid. The metabolism reactions included phase I reactions (hydroxylation, hydrolysis, deglycosylation, hydrogenation, demethylation and dehydroxylation) and phase II reactions (conjugation with glutatione, cysteine, acetylcysteine, glucuronide, sulfate). It is the first systematic metabolic study of DZT in vivo and some metabolites were also reported for the first time, which could provide a scientific basis for explaining the multiple functions of DZT. More importantly, the integrated strategy also shows promising perspectives in the identification of the metabolites in TCM from a complicated biological matrix.


Assuntos
Fracionamento Químico/métodos , Medicamentos de Ervas Chinesas/metabolismo , Metabolômica/métodos , Administração Oral , Animais , Fracionamento Químico/instrumentação , Cromatografia Líquida de Alta Pressão/instrumentação , Cromatografia Líquida de Alta Pressão/métodos , Análise Discriminante , Medicamentos de Ervas Chinesas/administração & dosagem , Medicamentos de Ervas Chinesas/análise , Masculino , Metabolômica/instrumentação , Análise Multivariada , Ratos , Ratos Sprague-Dawley , Espectrometria de Massas por Ionização por Electrospray/instrumentação , Espectrometria de Massas por Ionização por Electrospray/métodos , Comprimidos
6.
RSC Adv ; 9(16): 8714-8727, 2019 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-35517662

RESUMO

The compound Dan Zhi Tablet (DZT), a reputable traditional Chinese medicine prescription, is widely used for the treatment of ischemic stroke in clinic. However, its systematic chemical constituents have rarely been elucidated, which hampers its quality evaluation, the study of bioactive constituents and the mechanism of action interpretation. In this study, we developed a combination of multidimensional data acquisition and data processing strategy with the aim to globally and comprehensively identify the chemical constituents in DZT based on UPLC-TWIMS-QTOFMS. First, multidimensional acquisition modes (MSE, Fast DDA and HDMSE) were performed on UPLC-TWIMS-QTOFMS. Second, targeted characterizations of the known compounds and their analogues present in DZT were carried out on the basis of the corresponding commercial standards or Mass2Motifs. Third, untargeted identification of unknown compounds in DZT was performed by extracting shared Mass2Motifs from the raw fragmentation spectra. Finally, the coeluting isomers were characterized using a precursor and/or product ion mobility. Consequently, 202 compounds were detected from DZT: 29 of them were unambiguously identified by comparison with reference compounds, 29 unknown compounds were discovered in specific medicinal materials, and ten pairs of coeluting isomers, which could not be distinguished using conventional MSE or Fast-DDA, were resolved using HDMSE only. This strategy was successfully used for the rapid and global identification of complex compounds including known, unknown and coeluting isomeric compounds in DZT and provided helpful chemical information for further quality control, pharmacology and active mechanism research on DZT.

7.
J Sep Sci ; 41(18): 3569-3582, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30062810

RESUMO

Deng-Zhan-Xi-Xin injection is a well-known traditional Chinese medicine prescription for the treatment of cardiovascular and cerebral vessel diseases. However, there have been few reports on its chemical constituents and metabolic pathway, which has blocked its further quality control and studies on its pharmacology and mechanism of action. In this study, an integrative method was established to rapidly explore the chemical constituents and metabolites of Deng-Zhan-Xi-Xin injection using ultra high performance liquid chromatography coupled with quadrupole time-of-flight tandem mass spectrometry and the UNIFI™ software combined with multiple data processing approaches. As a result, a total of 40 compounds, including 9 flavonoids and 31 phenolic acids were identified or tentatively characterized, and five compounds were first reported in Deng-Zhan-Xi-Xin injection. Under the same analysis conditions, 70 compounds have been detected in rats, including 25 prototypes and 45 metabolites. This was the first systematic research study on the metabolic profiling of Deng-Zhan-Xi-Xin injection. This study provides valuable chemical information for the quality control and research on pharmacology and mechanism of action of Deng-Zhan-Xi-Xin injection. Moreover, it provides a valuable strategy for analyzing the chemical components and metabolites of other traditional Chinese medicine prescriptions.


Assuntos
Medicamentos de Ervas Chinesas/análise , Erigeron/química , Animais , Cromatografia Líquida de Alta Pressão , Medicamentos de Ervas Chinesas/administração & dosagem , Medicamentos de Ervas Chinesas/metabolismo , Masculino , Espectrometria de Massas , Medicina Tradicional Chinesa , Ratos , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA